- SI Units we commonly use in Chemistry:
- SI prefixes we will use regularly:

Prefix	Symbol	As a power
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10
		1
deci	d	10^{-1}
centi	C	10^{-2}
milli	m	10^{-3}
micro	H	10^{-6}
nano	n	10^{-9}

A. Calculations Using Unit Conversions

- You mustfollow the same method shown below.
- We can convert from one unit to another by using relationships that are equivalent to each other then arranged as a ratio. The ratio is called the conversion factor.
- For example, with time we know the following relationships:

Relationship	Conversion Factor
$1 \mathrm{~min}=60 \mathrm{~s}$	$\frac{1 \text { min }}{60 \mathrm{~s}}$ and $\frac{60 \mathrm{~s}}{1 \mathrm{~min}}$
1 hour $=60 \mathrm{~min}$	$\frac{1 \text { hour }}{60 \text { min }}$ and $\frac{60 \mathrm{~min}}{1 \text { hour }}$
24 hours $=1$ day	$\frac{1 \text { day }}{24 \text { hours }}$ and $\frac{24 \text { hours }}{1 \text { day }}$

Note that the values in the ratios are equal to each other (i.e. $1 \mathrm{~min}=60 \mathrm{~s}$). Therefore, the ratio really has a value equal to 1 . Multiplying any factor by the conversion factor is equivalent o multiplying by 1 and will not change the value of the expression.

The general formula for solving problems using the conversion factor method:
Unknown Amount = (initial amount given in the problem) \times (conversion factor)

Examples:

1. How many seconds are there in 49 minutes?
2. How many hours are there in 448 minutes?

$$
448 \mathrm{mh} \times \frac{1 \mathrm{hr}}{60 \text { mr }}=2.466 \mathrm{hr}
$$

3. How many minutes are there in 44 days? (2 steps)

$$
\begin{aligned}
& \text { 4. How many seconds are there in } 3 \text { days? (3 steps) } \\
& 3 \text { day's } \times \frac{24 \text {, hor }}{1 \text { days }} \times \frac{60 \text { min }}{1 \text { mod }} \times \frac{60 \text { see }}{1 \text { man }}=259200 \mathrm{sec} \\
& \text { Note: }
\end{aligned}
$$

- All the units cancel each other except the desired unit (s). (show this in your work!)
- The expression " 3 days" is multiplied by three conversion factors that are all equivalent to " 1 ". The final answer changed because the "expression" has a different unit, but the actual value is still the same.

5. If the density of sea water is $1.2 \mathrm{~g} / \mathrm{mL}$, calculate the mass of 45 mL of sea water.

$$
45 \mathrm{mk} \times \frac{1.2 \mathrm{~g}}{1 \mathrm{gK}}=54955 \mathrm{~g}
$$

6. If a car is moving at 50 km , calculate how far (in metres) the car moves in 5 seconds.

$$
\begin{aligned}
& 5 \sec \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{50 \mathrm{~km}}{h r} \times \frac{1\left(10^{3}\right) \mathrm{m}}{1 \mathrm{~km}}= \\
&=69.44 \mathrm{~m} \\
&=70 \mathrm{~m} \text { or } 7 \times 10^{\prime} \mathrm{m}
\end{aligned}
$$

WARNING! The unit conversion method is used EXTENSIVELY in Chemistry 11, learn it and love it!
More Examples:(Hint: always put the unit convertor $2^{\text {nd }}!$)
a) How many minutes are there in 1 week?

$$
" \infty \text { " sig } \frac{1}{\text { pigs as it is a perched week eel }} \times \frac{7 \text { day }}{1 \text { day }} \times \frac{24 \mathrm{~min}}{1 \mathrm{hr}}=10080 \mathrm{~min}
$$

b) How many centimeters are in 21.5 km ?

$$
21.5 \mathrm{~km} \times \frac{1\left(10^{3}\right) \mathrm{m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~cm}}{1\left(10^{2}\right) \mathrm{m}}=2150000 \mathrm{~cm}
$$

c) If you have 45 dozen eggs, how many eggs do you have?
d) If a car can move $50 \mathrm{~km} / \mathrm{h}$, how far can the car go in 3.5 hours?

$$
3.5 \mathrm{hr} \times \frac{50 \mathrm{~cm}}{1 \mathrm{hr}}=175 \mathrm{~km} 5200 \mathrm{~km}
$$

e) One molecule of phosphorus has 4 atoms. How many molecules are there in 448 atoms of phosphorus?

$$
-248 \text { atoms } P_{4} \times \frac{1 \text { molecule } P_{4}}{4 \text { atom } P}=112-\text { milecoks } P_{4}
$$

f) If one mole of carbon has a mass of 12.0 g , what is the mass of 4.7 moles of carbon?

$$
4.7 \text { mole } \times \frac{12.09}{1 \text { mole }}=56.4 \mathrm{~g} \quad 56 \mathrm{~g}
$$

g) The density of aluminum is $2.7 \mathrm{~g} / \mathrm{mL}$. What is the volume of 7.4 g of aluminum?

$$
7.4 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mL}}{2.7 \mathrm{~g}}=2.7407 \mathrm{aLAI} 2.7 \mathrm{mLM}
$$

h) If a car averages $60 \mathrm{~km} / \mathrm{h}$, how long will it take to cover 57 km ?

$$
57 \mathrm{~km} \times \frac{1 \mathrm{hr}}{60 \mathrm{~km}}=0.95 \mathrm{hr} 1 \mathrm{hr}
$$

"Only those who have the patience to do simple things perfectly, will acquire the skill to do difficult things easily."
~ Johann vo Schiller (German philosopher)
B. Multiple Unit Conversions $\boldsymbol{\sim}$ Chain Conversions

1. How many minutes are there in 3 days?

$$
3 \text { day } \times\left(\frac{24 \mathrm{hr}}{1 \text { day }^{2}}\right)
$$

2. The energy needed to melt 1 ko of ice requires 334 kJ . The largest known irsherg has a volume of about $3.1 \times 10^{15} \mathrm{~m}^{5}$. How much heat was required to melt the iceberg if $1 \mathrm{~m}^{3}$ of ice has a mass of 917 kg ?

$$
3.1 \times 10^{13} \mathrm{~m}^{3} \times \frac{9!7 \mathrm{~kg}}{1 \mathrm{~m}^{3}} \times \frac{334 \mathrm{~kJ}}{1 \mathrm{~kg}}=\frac{9.4946 \times 10^{18} \mathrm{~kJ}}{9.5 \times 10^{18} \mathrm{~kJ}}
$$

3. How far does a car go in 10 seconds if it si moving at $50 \mathrm{~km} /$?

$$
10 \mathrm{sec} \times \frac{1 \mathrm{hr}}{3600 \mathrm{sec}} \times \frac{30 \mathrm{~km}}{\mathrm{hr}}=0.1388 \mathrm{~km}
$$

4. If 1 yard $=3$ feet, 1 foot $=12$ inches, and 1 inch $=2.54 \mathrm{~cm}$, how many meters are in 50 yards?

$$
50 y d \times \frac{3 \mathrm{ft}}{1 \mathrm{yd}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{1\left(1^{-2}\right) \mathrm{m}}{1 \mathrm{~cm}}=\frac{45.72 \mathrm{~m}}{50 \mathrm{~m}}
$$

5. A sprinter can run 100 metres in 10 seconds. How fast is the sprinter moving in km / h ?

$$
\frac{100 \mathrm{k}}{10 \mathrm{~s}} \times \frac{1 \mathrm{~km}}{1\left(10^{\circ}\right)_{\mathrm{m}} \times} \times \frac{36008}{1 \mathrm{hr}}=36 \mathrm{~km} / \mathrm{hr}
$$

WARNING! The unit conversion method is used EXTENSIVELY in Chemistry 11, learn it and love it!
C. Derived Quantities

- Quantities made up by combining two or more other values.
- Derived unit is a unit made by combining two or more units.
area $\left(m^{2}\right)$
volume (cm^{3})
density (g / L)
Examples: (Hint: $\mathrm{cm}^{2}=\mathrm{cm} \times \mathrm{cm}$, the value of the power tells you how many times you must convert the unit!)

1. Convert $1.5 \mathrm{~cm}^{2}$ to m^{2}.

$$
1.5 \mathrm{c}^{2} \times \frac{1\left(0^{5}\right) \mathrm{m}}{1 \mathrm{~cm}} \times \frac{1\left(00^{2}\right) \mathrm{m}}{1 \mathrm{~m}}=1.5 \times 10^{-4} \mathrm{~m}^{2}
$$

2. Convert $25 \mathrm{~m}^{3}$ to cm^{3}. $25 \mathrm{~m}^{3}=25 \mathrm{~m} \times \mathrm{m} \times \mathrm{m}$

$$
25 \mathrm{~m}^{3} \times \frac{\mathrm{cm}}{\left(10^{-2}\right) \mathrm{m}} \times \frac{\mathrm{cm}}{\left(10^{2}\right) \mathrm{m}} \times \frac{\mathrm{cm}}{\left(10^{2}\right) \mathrm{m}}=2.5 \times 10^{7} \mathrm{~cm}^{3}
$$

3. If an iron bar has a volume of 5.0 L and a mass of 39 kg , what is the density of the iron bar in g / L ?

$$
\frac{39 \mathrm{~kg}}{5.0 \mathrm{~L}} \times \frac{(\mathrm{k}) \mathrm{g}}{\mathrm{Kg}}=\frac{7800 \mathrm{~g}}{\mathrm{~L}}
$$

4. What is the volume occupied by 35 g of mercury. The density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$.

$$
35 \mathrm{~g} \times \frac{\mathrm{mL}}{13.69}=2.573 \mathrm{~mL} \quad 2.6 \mathrm{~mL}
$$

5. Convert $50 \mathrm{~km} / \mathrm{h}$ into m / s.

$$
50 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{\left(0^{3}\right)^{3} \mathrm{~m}}{\mathrm{~km}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=13.88 \frac{\mathrm{~m}}{\mathrm{~s}} 10 \mathrm{y}
$$

WARNING! The unit conversion method is used EXTENSIVELY in Chemistry 11, learn it and love it!
D. Challenging Unit Conversions:

1. Light travels at a rate of $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. It takes light 8.3 minutes to travel from the sun to Earth. What is the distance from the sun to Earth in kilometres?

$$
\underline{8} .3 \mathrm{~min} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{3.000 \times 10^{8} \mathrm{~m}}{\mathrm{sec}} \times \frac{1 \mathrm{~km}}{1\left(10^{3}\right) \mathrm{m}}=1.494 \times 10^{8} \mathrm{~km}
$$

2. The Cullinan diamond, the largest diamond ever found, has an uncut volume of 177 mL . If 1 mL of diamond has a mass of 3.51 g and 1 carat $=0.200 \mathrm{~g}$, how many carats was the Cullinan diamond?

$$
177 \mathrm{~mL} \times \frac{3.51 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \text { carat }}{0.200 \mathrm{~g}}=3106.35 \mathrm{corats} 3110 \text { carats }
$$

3. Express $0.0098 \mathrm{cL} / \mathrm{ms}^{2}$ in $\mathrm{kL} / \mathrm{s}^{2}$

$$
\frac{0.0098 . \mathrm{ct}^{-2}}{m \mathrm{~s}^{2}} \times \frac{1\left(10^{0} \mathrm{~L} \mathrm{~L}\right.}{1 \mathrm{ct}} \times \frac{1 \mathrm{~kL}}{1\left(10^{3}\right)^{\prime} \mathrm{L}} \times \frac{1 \mathrm{~ms}^{2}}{1\left(10^{3}\right) \mathrm{s}^{2}}=9.8 \times 10^{-5} \frac{\mathrm{~kL}}{\mathrm{~s}^{2}}
$$

4. The pressure in a hot air balloon is $9.0 \mathrm{lb} / \mathrm{in}^{3}$. Convert the pressure inside the balloon to $\mathrm{kg} / \mathrm{m}^{3}$.

$$
9.0 \frac{\mathrm{lb}}{\mathrm{in}^{3}} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{~b}} \times \frac{(1 \mathrm{in})^{3}}{(2.54 \mathrm{~cm})^{3}} \times \frac{(1 \mathrm{~cm})^{3}}{(1(10) \mathrm{m})^{3}}=\frac{300000 \frac{\mathrm{ks}}{\mathrm{~m}^{3}}}{\sqrt{3.0} \times 10^{5} \mathrm{~kg} \mathrm{~m}^{3}}
$$

5. A Celtic chicken farmer wants to buy a gift for his wife. The gift was worth 2 horses. At the local market, 3 horses were worth 5 cows, 1 cow was worth 4 pigs, 3 pigs were worth 4 goats, and 1 goat was worth 9 chickens. How much was the gift going to cost the farmer, who had to pay in

$$
1 \text { gift } \times \frac{2 \text { horses }}{1 \text { gift }} \times \frac{5 \text { cows }}{3 \text { horses }} \times \frac{4 \text { pigs }}{1 \text { cow }} \times \frac{4 \text { goats }}{3 \text { pigs }} \times \frac{9 \text { chickens }}{1 \text { goat }}=\begin{aligned}
& 160 \\
& \text { chickens }
\end{aligned}
$$

all are perfect values <compat>.unlithited sig figs .. Why?? ?
6. The largest iceberg in the world requires $6.53 \times 10^{7} \mathrm{~kJ}$ of heat energy to melt. One kilogram of TNT or dynamite releases $1.5 \times 10^{4} \mathrm{~kJ}$ of energy when exploded. Provided that all of the energy of an explosion went into melting the iceberg, how many pounds of TNT would be needed?

$$
\underline{6.53} \times 10^{7} \mathrm{KJ} \times \frac{1 \mathrm{~kg}}{1.5 \times 10^{4} \mathrm{~kJ}} \times \frac{1\left(10^{3}\right) \mathrm{g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{lb}}{\underline{5} 4 \mathrm{~g}}=\frac{9588.83 \mathrm{lb}}{9600 \mathrm{lb}}
$$

7. Express $50.0024 \mathrm{~mL} / \mathrm{min}^{2}$ in $\mu \mathrm{L} / \mathrm{s}^{2}$

$$
\begin{aligned}
& 50.002 \underline{-}-\frac{m^{\prime \prime}}{m n^{-2}} \times \frac{1\left(10^{-3}\right) L}{1 \mathrm{~mL}} \times \frac{1 \mu L}{1\left(10^{-6}\right) L} \times \frac{1 \mathrm{~mm}}{60 \mathrm{sec}} \times \frac{1 \mathrm{mn}}{60 \mathrm{sec}}= \\
& =13.8895 \frac{\mu \mathrm{~L}}{\mathrm{~s}^{2}}
\end{aligned}
$$

