The following are ordinary physics problems. Place the answer in scientific notation when appropriate and simplify the units (Scientific notation is used when it takes less time to write than the ordinary number does. As an example 200 is easier to write than 2.00x10², but 2.00x10⁸ is easier to write than 200,000,000). Do your best to cancel units, and attempt to show the simplified units in the final answer.

a.
$$T_{s} = 2\pi \sqrt{\frac{45 \times 10^{-2} kg}{2.0 \times 10^{3} kg/s^{2}}} =$$
b.
$$K = \frac{1}{2} (6.6 \times 10^{2} kg) (2.11 \times 10^{4} m/s)^{2} =$$
c.
$$F = \left(9.0 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}}\right) \frac{(3.2 \times 10^{-9} C)(9.6 \times 10^{-9} C)}{(0.32m)^{2}} =$$
d.
$$\frac{1}{R_{p}} = \frac{1}{45 \times 10^{2} \Omega} + \frac{1}{9.4 \times 10^{2} \Omega} \qquad R_{p} =$$
e.
$$e = \frac{(1.7 \times 10^{3} J) - (3.3 \times 10^{2} J)}{(1.7 \times 10^{3} J)} =$$
f.
$$(133) \sin 25.0^{\circ} = (150) \sin \theta \qquad \theta =$$
g.
$$K_{max} = (6.63 \times 10^{-34} J \cdot s) (7.09 \times 10^{14} s) - 2.17 \times 10^{-19} J =$$
h.
$$\gamma = \sqrt{\sqrt{1 - \frac{2.25 \times 10^{8} m/s}{300 \times 10^{8} m/s}}} =$$

2. Often problems in physics are done with variables only. Solve for the variable indicated. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers.

a.
$$v^2 = v_o^2 + 2a(s - s_o)$$
, $a =$
 g. $B = \frac{\mu_o}{2\pi} \frac{I}{r}$, $r =$

 b. $K = \frac{1}{2}kx^2$, $x =$
 h. $x_m = \frac{m\lambda L}{d}$, $d =$

 c. $T_p = 2\pi\sqrt{\frac{\ell}{g}}$, $g =$
 i. $pV = nRT$, $T =$

 d. $F_g = G\frac{m_1m_2}{r^2}$, $r =$
 j. $\sin\theta_c = \frac{n_1}{n_2}$, $\theta_c =$

 e. $mgh = \frac{1}{2}mv^2$, $v =$
 k. $qV = \frac{1}{2}mv^2$, $v =$

 f. $x = x_o + v_ot + \frac{1}{2}at^2$, $t =$
 l. $\frac{1}{f} = \frac{1}{s_o} + \frac{1}{s_i}$, $s_i =$

3. Science uses the *MKS* system (*SI*: System Internationale). *MKS* stands for meter, kilogram, second. These are the units of choice of physics. The equations in physics depend on unit agreement. So you must convert to *MKS* in most problems to arrive at the correct answer.

kilometers (<i>km</i>) to meters (<i>m</i>)	and meters to kilometers	gra
centimeters (<i>cm</i>) to meters (<i>m</i>)	and meters to centimeters	Cel
millimeters (<i>mm</i>) to meters (<i>m</i>)	and meters to millimeters	atm
nanometers (nm) to meters (m)	and metes to nanometers	lite
micrometers (μm) to meters (m)		

Other conversions will be taught as they become necessary.

gram (g) to kilogram (kg) Celsius (^{o}C) to Kelvin (K) atmospheres (*atm*) to Pascals (Pa) liters (L) to cubic meters (m^{3})

What if you don't know the conversion factors? Universities want students who can find their own information (so do employers).

Enjoy.

25.0 μm	=	m
2.65 <i>mm</i>	=	m
8.23 <i>m</i>	=	km
5.4 <i>L</i>	=	m ³
40.0 <i>cm</i>	=	m
6.23x10 ⁻⁷ m	=	nm
1.5x10 ¹¹ <i>m</i>	=	km
	25.0 μm 2.65 mm 8.23 m 5.4 L 40.0 cm 6.23x10 ⁻⁷ m 1.5x10 ¹¹ m	$2.65 mm = \$ $8.23 m = _\$ $5.4 L = _\$ $40.0 cm = _\$ $6.23 \times 10^{-7} m = _\$

6. Solve the following geometric problems.

- c. The radius of a circle is 5.5 cm,
 - i. What is the circumference in meters?
 - ii. What is its area in square meters?
- d. What is the area under the curve at the right?

