1. The following are ordinary physics problems. Place the answer in scientific notation when appropriate and simplify the units (Scientific notation is used when it takes less time to write than the ordinary number does. As an example 200 is easier to write than 2.00×10^{2}, but 2.00×10^{8} is easier to write than $200,000,000$). Do your best to cancel units, and attempt to show the simplified units in the final answer.
a. $\quad T_{s}=2 \pi \sqrt{\frac{4.5 \times 10^{-2} \mathrm{~kg}}{2.0 \times 10^{3} \mathrm{~kg} / \mathrm{s}^{2}}}=$
b. $\quad K=\frac{1}{2}\left(6.6 \times 10^{2} \mathrm{~kg}\right)\left(2.11 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}=$
c. $F=\left(9.0 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{C^{2}}\right) \frac{\left(3.2 \times 10^{-9} \mathrm{C}\right)\left(9.6 \times 10^{-9} \mathrm{C}\right)}{(0.32 \mathrm{~m})^{2}}=$
d. $\frac{1}{R_{p}}=\frac{1}{4.5 \times 10^{2} \Omega}+\frac{1}{9.4 \times 10^{2} \Omega} \quad R_{P}=$
e. $e=\frac{\left(1.7 \times 10^{3} \mathrm{~J}\right)-\left(3.3 \times 10^{2} \mathrm{~J}\right)}{\left(1.7 \times 10^{3} \mathrm{~J}\right)}=$
f. $(1.33) \sin 25.0^{\circ}=(1.50) \sin \theta$ $\theta=$ \qquad
g. $\quad K_{\max }=\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(7.09 \times 10^{14} \mathrm{~s}\right)-2.17 \times 10^{-19} \mathrm{~J}=$
h. $\gamma=1 / \sqrt{1-\frac{2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}}=$
2. Often problems in physics are done with variables only. Solve for the variable indicated. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers.
a. $\quad v^{2}=v_{o}^{2}+2 a\left(s-s_{o}\right) \quad, a=$ \qquad g. $\quad B=\frac{\mu_{o}}{2 \pi} \frac{I}{r} \quad, r=$
b. $\quad K=\frac{1}{2} k x^{2}$
, $x=$ \qquad h. $\quad x_{m}=\frac{m \lambda L}{d} \quad, d=$
c. $T_{p}=2 \pi \sqrt{\frac{\ell}{g}}$
, $g=$ \qquad i. $\quad p V=n R T \quad, T=$ \qquad
d. $\quad F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$
, $r=$ \qquad j. $\quad \sin \theta_{c}=\frac{n_{1}}{n_{2}} \quad, \theta_{c}=$ \qquad
e. $m g h=\frac{1}{2} m v^{2}$
, $v=$ \qquad k. $q V=\frac{1}{2} m v^{2} \quad, v=$
I. $\frac{1}{f}=\frac{1}{s_{o}}+\frac{1}{s_{i}} \quad, s_{i}=$
f. $\quad x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \quad, t=\square$
3. Science uses the MKS system (SI: System Internationale). MKS stands for meter, kilogram, second. These are the units of choice of physics. The equations in physics depend on unit agreement. So you must convert to $M K S$ in most problems to arrive at the correct answer.
kilometers (km) to meters (m) and meters to kilometers gram (g) to kilogram (kg)
centimeters (cm) to meters (m) and meters to centimeters
millimeters ($m m$) to meters (m) and meters to millimeters
nanometers $(n m)$ to meters (m) and metes to nanometers Celsius (${ }^{\circ} \mathrm{C}$) to Kelvin (K) atmospheres (atm) to Pascals (Pa) liters (L) to cubic meters $\left(m^{3}\right)$
micrometers (μm) to meters (m)
Other conversions will be taught as they become necessary.
What if you don't know the conversion factors? Universities want students who can find their own information (so do employers).

Enjoy.
a. $4008 g$ \qquad kg
b. $\quad 1.2 \mathrm{~km}$ \qquad
h. $\quad 25.0 \mu \mathrm{~m}$
$=$ \qquad m
i. $2.65 \mathrm{~mm}=$ \qquad m
c. 823 nm \qquad m
d. 298 K
$=$ \qquad ${ }^{\circ} \mathrm{C}$
e. $\quad 0.77 \mathrm{~m}$ \qquad cm
f. $\quad 8.8 \times 10^{-8} \mathrm{~m}$ \qquad mm
g. 1.2 atm
$=$ \qquad $P a$
j. $8.23 \mathrm{~m}=$ \qquad km
k. $5.4 L=$ \qquad m^{3}
l. $40.0 \mathrm{~cm}=$ \qquad m
m. $6.23 \times 10^{-7} \mathrm{~m}=$ \qquad $n m$
n. $\quad 1.5 \times 10^{11} \mathrm{~m}=$ \qquad km
6. Solve the following geometric problems.
a. What is angle θ ?
\qquad

b. How large is θ ?

c. The radius of a circle is 5.5 cm ,
i. What is the circumference in meters?
ii. What is its area in square meters?
d. What is the area under the curve at the right?

