Worksheet 3.1 - Independence of Perpendicular Vectors

1. A plane is flying round trip to an destination 250 km North of its starting point. The plane flies with an airspeed of $325 \mathrm{~km} / \mathrm{h}$ and the wind is blowing at $50.0 \mathrm{~km} / \mathrm{h}$ due North.
a.)

b.)

urn to the starting point?

$325 \begin{aligned} \int_{\text {ats }} & t\end{aligned}=\frac{d}{V}$
2) A tourist starts at the back of train that is 45 m long and walks towards the front at $1.5 \mathrm{~m} / \mathrm{s}$. The train is moving at $12 \mathrm{~m} / \mathrm{s}$.
a) How long does it take for the tourist to reach the front of the train, and how far has the tourist moved relative to the ground outside the train by the time they reach the front?

b) If the tourist decides to run all the way back to the end of the train at $6.0 \mathrm{~m} / \mathrm{s}$, how far have they travelled relative to the ground outside in this time?

$$
\begin{aligned}
& 00 \quad \frac{12 \mathrm{mb}}{2} 00 \begin{array}{c}
\text { relative } \\
\text { tom }
\end{array} \\
& \text { tain }
\end{aligned}=\frac{d}{V}=\frac{45 \mathrm{~m}}{6.0 \mathrm{~m} / \mathrm{s}}
$$

3) Solve the following triangles (all sides and angles) using SOH - CAH - TOA and Pythagoras

$$
\begin{aligned}
x=\sqrt{15^{2}-10^{2}} \quad \alpha=\cos ^{-1}\left(\frac{10}{15}\right)^{\prime}, & y \\
=11.2 \mathrm{~m} & \theta=48^{\circ} \\
& \theta=180-48=42^{\circ},
\end{aligned} \quad x=295 \sin 52^{\circ}=232, \quad x=33 \tan 25^{\circ}=
$$

4) Add the following x and y vectors, draw the resultant vector and solve its magnitude and direction.
a) $x: 3.4 \mathrm{~m} \quad \mathrm{y}: 2.7 \mathrm{~m}$
b) $x: 5.6 \mathrm{~m} / \mathrm{s} \mathrm{y}:-7.1 \mathrm{~m} / \mathrm{s}$
c) $x:-211 \mathrm{~m}$ y: - 44.0 m

$\theta=\tan ^{-1}\left(\frac{2.7}{3.4}\right)=38^{\circ}$ Not E
$\theta=\tan ^{-1}\left(\frac{7.1}{5.6}\right)=52^{\circ} \operatorname{Sof} E$
$\begin{aligned} & 1 \\ &-440 \\ & \sum_{L^{-}}, \frac{-211 m}{\theta_{-}^{\prime}} \\ & d=\sqrt{44^{2}+21^{2}} \\ &=216 \mathrm{~m}\end{aligned}$

$$
\theta=\tan ^{-1}\left(\frac{44}{211}\right)
$$

$$
=12 \cdot \operatorname{s.f} \mathrm{w}
$$

