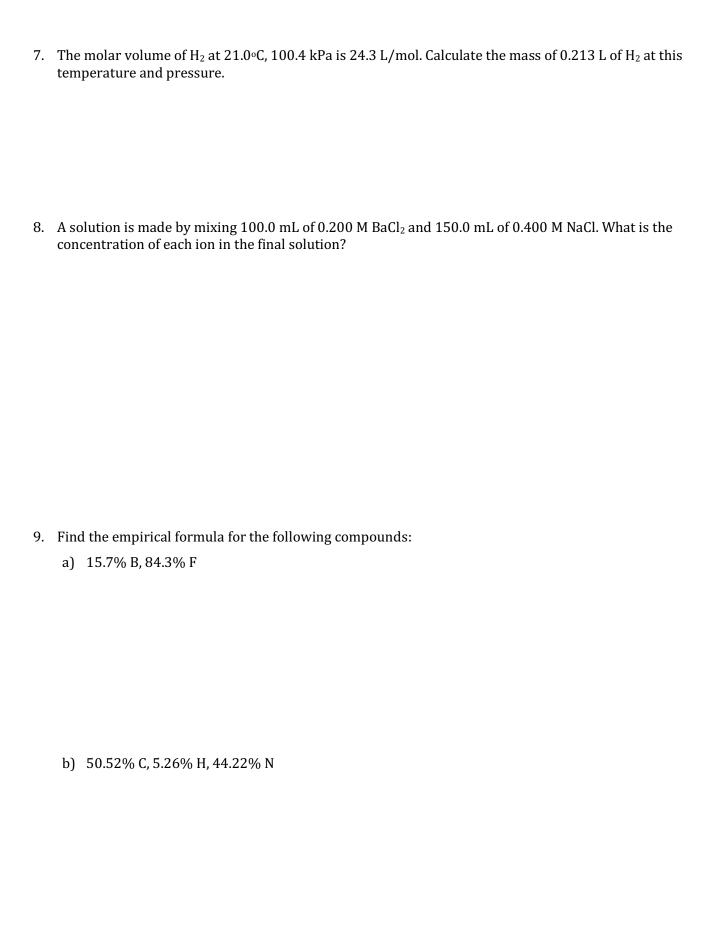
Chemistry 11

Mole Unit Practice Test

Name: Date: Block:

Multiple choice:


1. T. A. B. C. D.	2 3
2. T A. B. C. D.	3 5
A. B. C.	onvert this number to scientific notion: 154000 1.54×10^5 1.54×10^{-5} 15.4×10^4 154×10^3
A. B. C.	3
would be: A. B.	student is measuring the molar mass of an object. The unit used $\begin{array}{l} mol/g \\ g/L \\ g/mol \\ g \end{array}$

6. A student is reporting the molar concentration of a solution. The	
unit used would be:	
A. mol/L	
B. mol/g	
C. L/mol	
D. g/mol	
7. A student is measuring the volume of an object. All of the following	5
units could be used except:	
A. L	
B. mL	
C. cm ³	
D. g	
8. At the same temperature and pressure, which sample of gas	
contains the same number of particles as one liter of oxygen, O ₂ ?	
A. one liter of He	
B. three liters of CO ₂	
C. two liters of Ne	
D. two liters of H ₂	
9. What is the mass of a single molecule of water?	
A. 2.992×10^{-23} grams	
B. 1.00 gram	
C. 6.022 x 10 ⁻²² grams	
D. 18.02 grams	
E. 2.992×10^{23} grams	
Show your work below:	
-	

 10. Another term for molarity is: A. Concentration B. Molar mass C. Molecular formula D. Moles/gram 	14. A compo mass of 99.00 g/m A. CH ₂ Cl B. C ₂ H ₄ Cl ₂ C. C ₃ H ₆ Cl ₃ D. C ₄ H ₈ Cl ₄
11. The percentage of calcium (by mass) in the molecule Ca ₃ Fe ₂ (SiO ₄) ₃	
is A. 7.887 % B. 21.98 % C. 23.67 % D. 37.78 % Show your work below:	15. A composition of formula is: A. CH ₂ B. C ₂ H ₅ C. C ₅ H ₁₀ D. C ₁₀ H ₂₀
 12. A molecular formula tells us: A. The actual number of atoms of each element in a compound B. The lowest ratio of atoms of each element in a compound C. All possible multiples of an empirical formula D. The concentration of that compound in a solution 	
 13. The empirical formula tells us: A. the actual number of atoms in a compound B. the concentration of a compound C. the molar mass of a compound D. the lowest ratio of each element in a compound 	

Short Answer:

1.	How many atoms are in $Ni(H_2O)_2(NH_3)_3Cl_2$?
2.	The density of $CCl_{4(l)}$ is 1.59 g/mL. How many atoms are there in 2.50 L of CCl_4 ?
	At STP, 1 mole of argon gas has a volume of How many molecules of potassium iodide are in 10.0 g of potassium iodide?
5.	What molar concentration of KCl is produced by measuring out 1.00 g KCl and adding water up to 0.350 L of solution?
6.	A 0.600 mol sample of an unknown gas has a mass of 52.8 g and contains only carbon and fluorine. A. What is the molar mass of this unknown gas?
	B. What is the molecular formula of this unknown gas given that each molecule contains only 1 carbon atom?

