Practice Test

- **1.** Write as a product or quotient of powers.
- a) $(3 \times 4)^3$ b) $[(-5) \times 2]^4$ c) $\left(\frac{1}{4}\right)^4$ d) $-\left(\frac{9}{3}\right)^3$ 2. Simplify. a) $-(2^3)^3$ b) $(6^2)^0$ c) $[(-5)^2]^3$ d) $-[(-3)^2]^4$
- **3.** Simplify each expression, then evaluate it. **a)** $[(-3) \times (-2)]^4$ **b)** $\left(\frac{1}{2}\right)^5$ **c)** $(6^0)^4$
- **4.** Is the value of a power with a negative base always negative? Or, is it always positive? Or, is it sometimes negative and sometimes positive? Illustrate your answer with some examples.
- 5. A baseball diamond is a square with side length about 27 m. Is the area of the baseball diamond greater or less than 10³ m²? How do you know?

d) $[(-3)^2]^3$

6. Explain why the brackets are not necessary in this expression: $(-3^5 \times 10) - (9 \div 3)$ Evaluate the expression, showing each step.

- 7. Identify the correct answer for $(2^3 + 4)^2 \times (-10)^3 \div (5 + 5)^2$. a) -240 b) -1440 c) 1440 d) -28 825 Explain how each of the other incorrect answers could have been determined.
- **8.** Evaluate only the expressions with a positive value. Explain how you know the sign of each expression before you evaluate it.
 - a) $(-5)^3 \times (-5)^2 \div (-5)^1$ b) $[(-9)^6 - (-9)^3]^0$ c) $\frac{(-1)^2 \times (-1)^4}{(-1)^3 \times (-1)^2}$ d) $(-4)^6 + (-4)^4 \times (-4)^0$

11. a) The tallest tree in the world, Hyperion in California, is about 10² m tall. The highest mountain, Mount Everest, is about 10⁴ m high. About how many times as high as the tree is the mountain?

- b) Earth's diameter is about 10⁷ m. The largest known star has a diameter of about 10¹² m. About how many times as great as the diameter of Earth is the diameter of the largest known star?
- **12.** Write each number in standard form. **a)** $(4 \times 10^3) + (7 \times 10^2) + (2 \times 10^1)$
 - + (9×10^{0}) b) $(3 \times 10^{5}) + (2 \times 10^{2}) + (8 \times 10^{0})$
- **2.3 13.** Evaluate.

a) $3^4 + 3^2$	b) $(-4)^2 + (-4)^3$
c) $10^3 - 10^2$	d) $(-5)^4 - (-5)^2$

- **14.** Evaluate.
 - a) $2^3 + (5-2)^4$ b) $100 \div 2 + (4+1)^3$ c) $(6^2 + 7^2)^0 - (8^4 + 2^4)^0$
 - d) $3 \times 2^3 + 8 \div 4$
 - **e)** $(21 \div 7)^4 2^3$
 - f) $[(-4)^0 \times 10]^6 \div (15 10)^2$

15. Scientists grow bacteria.

This table shows how the number of bacteria doubles every hour.

Time	Elapsed Time After Noon (h)	Number of Bacteria
noon	0	1000×2^{0}
1:00 р.м.	1	1000 × 2 ¹
2:00 р.м.	2	1000×2^2
3:00 р.м.	3	1000 × 2 ³

- a) Evaluate the expressions in the table to find the number of bacteria at each time.
 i) noon ii) 1:00 P.M.
 iii) 2:00 P.M. iv) 3:00 P.M.
- b) The pattern continues. Write an expression, then evaluate it, to find the number of bacteria at each time.
 i) 4:00 P.M. ii) 6:00 P.M.
 iii) 9:00 P.M. iv) midnight
- 16. Use a calculator to evaluate this expression:
 4³ (2 × 3)⁴ + 11
 Change the position of the brackets.
 Evaluate the new expression. How many different answers can you get by changing only the position of the brackets?
- **17.** Identify, then correct, any errors in the student work below. Explain how you think the errors occurred.

$$(-2)^{2} \times 2^{3} - 3^{2} \div (-3) + (-4)^{2}$$

$$= (-2)^{5} - 9 \div (-3) + |6$$

$$= -32 - 3 + |6$$

$$= -35 + |6$$

$$= -|9$$

2.4 18. Write each product as a power, then evaluate the power.

a) $5^3 \times 5^4$ b) $(-2)^3 \times (-2)^2$ c) $3^2 \times 3^3 \times 3^1$ d) $-10^4 \times 10^0$

- **19.** There are about 10^{11} galaxies in the universe. Each galaxy contains about 10¹¹ stars. About how many stars are in the universe?
- **20.** Write each quotient as a power, then evaluate the power.
 - a) $7^5 \div 7^3$ **b)** $(-10)^9 \div (-10)^3$ c) $\frac{8^4}{8^2}$ **d)** $-\frac{6^7}{c^4}$
- **21.** a) Can you use the laws of exponents to simplify $6^3 \times 5^5$? Explain.
 - b) Can you use the laws of exponents to simplify $27^2 \div 9^2$? Explain.
- **22.** Find and correct any errors in the student work below.

Explain how you think the errors occurred.

2.5 23. Write each expression as a product or quotient of powers, then evaluate it. a) $(3 \times 5)^3$ **b)** $(12 \div 3)^5$ c) $[(-4) \times 2]^4$ d) $(63 \times 44)^0$

e) $\left(\frac{3}{2}\right)^5$ **f**) $\left(\frac{15}{2}\right)^2$

- **24.** Write each expression as a power.
 - a) $(3^2)^3$ **b)** $(4^0)^6$ c) $[(-2)^3]^3$ d) $(5^5)^2$

25. For each expression below:

Evaluate it in two different ways:

- i) do the operation in brackets first
- ii) use the exponent laws

In each case, which method is more efficient? Explain why.

a) $(5 \times 3)^3$ **b)** $(3 \times 3)^4$ c) $(8 \div 2)^5$ **d)** $\left(\frac{9}{3}\right)^2$ e) $(2^3)^4$ **f**) $(6^2)^0$

26. Write each expression as a power, then evaluate.

a)
$$6^4 \times 6^3$$

b) $(-11)^7 \div (-11)^5$
c) $\frac{3^4 \times 3^5}{3^3}$
d) $\frac{5^5}{5^3 \times 5^2}$
e) $\frac{(-4)^3 \times (-4)^6}{(-4)^2 \times (-4)^4}$
f) $\frac{10^6 \times 10^0}{10^3 \times 10^2}$

27. Simplify, then evaluate each expression. a) $2^3 \times 2^2 - 2^0 + 2^4 \div 2^3$

b)
$$\frac{(-2)^3 \times (-2)^2}{(-2)^3 - (-2)^2}$$

c)
$$12^2 \times 12^4 \div (-2)^4 - 12^0$$

d)
$$\frac{(-12)^2 \times (-12)^4}{(-2)^4 - 12^0}$$