Chemistry 11 Unit I \& II Test

* several correct analitative	Quantitative (estimate)	
A can of Coke	the can is red	the can contains 355 ml
A ruler	the yellow ruler	the 30 cm ruler

2) Plutonium is a radioactive chemical element with an atomic mass of $244 \mathrm{~g} / \mathrm{mol}$. It is found to have a silver appearance and will expand to 70.0% its volume when exposed to moist air and can ignite spontaneously. The density of plutonium was experimentally found to be 20 times greater than water.

Fill out the table below by giving two observations and two pieces of data.

	Observation	Data
Plutonium		

3) A beaker full of water is at room temperature. If you leave it alone, without adding any heat, it takes relatively a long time for water to evapora. Describe the physical properties of water at room temperature by circling your answers below.

Hardness:	high / low /NA
Viscosity:	high / low / NA
Malleability:	high / low /NA
Luster:	high / low / NA
Melting Point:	$0^{\circ} \mathrm{C} / 100^{\circ} \mathrm{C} / \mathrm{NA}$
Freezing Temperature:	$0^{\circ} \mathrm{C} / 100^{\circ} \mathrm{C} / \mathrm{NA}$

4) How many significant figures in the following?
a) $2.00032 \mathrm{~mm}=6$
b) 1000 m
$=(1$
c) $50000.0 \mathrm{~ns}=6$
d) 0.0000030000 MW
$=5$
e) $3.000 \times 10^{-4} \mathrm{pL}$

f) 0.06 L

5) Calculate the following to the correct number of significant figures:
a) $37.89 \times 24=909.36$
b) 45.9 - $35.22-10=$
(4) (2) \therefore (2)

$$
9.0 \times 10^{2}
$$

$$
\Rightarrow \frac{-1.30}{-8.7} \Rightarrow \therefore-10
$$

c) $1000 / 23.4 \times 4.57 \times \underbrace{10^{-4}}=$
d) $478 \times 10.9-33.90+23.000 / 3.4=$

$$
\text { (1) (3) (3) } 1000 / 23.4 \times \underbrace{4.57} \times 0^{10^{-4}}={ }^{4} \text { sect }^{\prime}(\text { infinite) }
$$

$$
=0.0195=0.02
$$

\therefore (3) 5210.2
\therefore (2) 61765

$$
\therefore 5210-33.90+6.8=
$$

$$
\begin{aligned}
& \Rightarrow \quad 5210 \\
& -\quad 33.90 \% \\
& \hline 517,6.1
\end{aligned}
$$

$$
\therefore \frac{5180+6.8}{50}=
$$

$$
\therefore \frac{\begin{array}{c}
5190 \\
0 R
\end{array}}{5.19 \times 10^{3}}
$$

518:6,8
7) If 1 mol of cyclobutane produces $1.34 \times 10^{3} \mathrm{~J}$ of heat when burned, how 'many mols of octane must be burned to produce 23000 J of heat?

8) If 1 L of blood has a mass of 1.2 kg ;
a. What is the mass of 8.34 L of blood?

$$
8.34 \mathrm{~L} \times \frac{\frac{1.2 \mathrm{~kg}}{1 \mathrm{~L}}}{\infty}=10.008 \mathrm{~kg}=\frac{10 . \mathrm{kg} \mathrm{er}}{1.0 \times 10^{2} \mathrm{~kg}}
$$

b. How much blood would a vampire need to drink, if he wants to gain 459 g by tomorrow?

$$
459 g \times \frac{\infty \mathrm{kg}}{\left.\frac{\left.10^{3}\right) g}{\infty}\right)} \times \frac{0 \mathrm{~L}}{\underline{1.2 \mathrm{~kg}}}=\frac{0.3825 \mathrm{~L}}{0.38 \mathrm{~L}}
$$

Calculate the equivalence between the following metric units: Note: (fico $\left.=10^{-12}\right) ;\left(\right.$ nano $\left.=10^{-9}\right) ;\left(\operatorname{deci}=10^{-1}\right)$
9) If it takes 1012 J of energy to melt 1.00 g of iron, then;
c. What mass of iron can be melted by 102 dJ of heat?

$$
102 d J \times \frac{\left(10^{-1}\right) J}{o d J} \times \frac{1.009}{1012 J}=0,01008 \mathrm{~g}
$$

d. How many kilojoules of heat are required to melt 79.4 g of iron?

$$
=0.0101 \mathrm{~g}
$$

$$
\underline{-19.4 g \times \frac{1012 J}{1.0 \underline{0}} \times \frac{k J}{\left(10^{3}\right) J}}=\frac{80.352 \mathrm{~kJ}}{80.4 \mathrm{~kJ}}
$$

10) A special star has a volume of $8.34 \times 10^{41} \mathrm{~L}$, an average density of $2.03 \mathrm{~g} / \mathrm{mL}$ and made purely of deuterium (an isotope of hydrogen). If this star burns an average of $8.9 \times 10^{10} \mathrm{~kg}$ per second, how many years will it take for the star to burn up (i.e. use up all the deuterium)?

$$
\begin{aligned}
& \underline{8,34} \times 10^{41} L \times \frac{m L}{\infty\left(10^{-3}\right) L} \times \frac{2.03-g}{\infty m L} \times \frac{\mathrm{kg}}{\left(10^{3}\right) \mathrm{g}} \times \frac{\infty \mathrm{sec}}{8,9 \times 10^{10} \mathrm{~kg}} \times \cdots \\
& \cdots \times \frac{1 \text { min }}{60 \text { see }} \times \frac{1 \mathrm{hr}}{60 \mathrm{mh}} \times \frac{1 \mathrm{~d}}{24 \mathrm{hr}} \times \frac{1 \text { year }}{365 d}=\frac{6.03 \times 10^{23} \mathrm{yr}}{6.0 \times 10^{23} \mathrm{yr}}
\end{aligned}
$$

11) Complete the following table:

tin(IV) nitrate	$\left.\mathrm{Sn}_{n} \mathrm{NO}_{3}\right)_{4}$
chromium(III) chromate	$\mathrm{Cr}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$
xenon disulphide	XeS_{2}
tricarbon tetraoxide	$\mathrm{C}_{3} \mathrm{O}_{4}$

