Quiz 6 a

The Space shuttle could blast off and reach an altitude of 2.0 km in 15.0 s . Assuming that the acceleration was uniform:
a. What is the acceleration of the shuttle?
b. What was its velocity at this point?

$$
\begin{aligned}
& V=? \\
& V_{0}=0 \mathrm{~m} / \mathrm{s} \\
& a=? \\
& d=2.0 \mathrm{~km}=2000 \mathrm{~m} \\
& t=15.0 \mathrm{~s}
\end{aligned}
$$

a.)

$$
\begin{aligned}
& d=y_{0}^{0} t+\frac{1}{2} a t^{2} \\
& 2 d=\frac{1}{2} a t^{2} \cdot 2 \\
& \frac{2 d}{t^{2}}=\frac{a t^{2}}{t^{2}} \\
& a=\frac{2 d}{t^{2}}=\frac{2(2000 \mathrm{~m})}{(15.0 \mathrm{~s})^{2}} \\
&=17.78 \mathrm{~m} / \mathrm{s}^{2} \\
&=18 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b.)

$$
\begin{aligned}
V & =V_{0}+a t \\
& =0+\left(17.78 \mathrm{~m} / \mathrm{s}^{2}\right)(15.0 \mathrm{~s})=270 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

always carry
extra sig figs
through your
cal culations

