A catapult is mounted on the top of a castle wall, 18 m above the ground. It launches a cow at a 55° angle above the horizontal. The cow lands on Sir Arthur's squire 4.56 s later.
a) At what initial speed was the cow launched?
b) What horizontal distance did the cow travel?

a.)

x	y
$V_{x}=$	$v_{y}=$
$d_{x}=$	$v_{y p}=?$
$t=4.56 \mathrm{~s}$	$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ $d_{y}=-18 \mathrm{n}$ $t=4.56 \mathrm{~s}$

b.) $\tan 55=\frac{V_{y 0}}{V_{x}}$

$$
\begin{aligned}
V_{x} & =\frac{V_{y}}{\tan 55^{s}}=12.88 \mathrm{~m} / \mathrm{s} \\
d_{x} & =V_{x} \cdot t \\
& =(12.88 \mathrm{~m} / \mathrm{s})(4.56 \mathrm{~s}) \\
& =58.8 \mathrm{~m}
\end{aligned}
$$

a)

$$
\begin{aligned}
d & =V_{0} t+\frac{1}{2} a t^{2} \\
V_{0} & =\frac{d-\frac{1}{2 a} t^{2}}{t}=\frac{-18-\frac{1}{2}(-9.8)(4.56)^{2}}{4.56} \\
& =18.40 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 55=\frac{V_{y o}}{V} \\
& V=\frac{V_{y o}}{\sin 55}=\frac{18.90}{\sin 55} \\
& =22.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

