$$
\text { Quiz } 3 c
$$

1) A student is gliding along on the physics scooter at a comfortable $2.8 \mathrm{~m} / \mathrm{s}$ when Mr Trask walks around the corner and the two collide. If the student is brought to rest in 0.15 s , what is their acceleration?
2) A car is moving at $30.0 \mathrm{~km} / \mathrm{h}$ when it accelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 3.6 s . What is the car's final speed?
1.) $a=$?
wait....hand? $\Delta V=V-V_{0}=0-2.8 \mathrm{~m} / \mathrm{s}$

$$
a=\frac{\Delta V}{t}=-\frac{2.8 \mathrm{~m} / \mathrm{s}}{0.15 \mathrm{~s}}
$$

Why ngat $\cdots=-2.8 \mathrm{~m} / \mathrm{s}$

$$
=-19 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
t=0.15 \mathrm{~s}
$$

$$
\text { 2.) } \begin{array}{rlrl}
a & =2.0 \mathrm{~m} / \mathrm{s}^{2} & a=\frac{\Delta v}{t} \Delta v=a \cdot t & =\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)(3.6 \mathrm{~s}) \\
\Delta v & =? & & =7.2 \mathrm{~m} / \mathrm{s} \\
t & =3.6 \mathrm{~s} & & \\
\begin{array}{rlrl}
V_{0}=30 \mathrm{~km} / \mathrm{h} \div 3.6 & \Delta V=V-V_{0} & V & =v_{0}+\Delta V \\
=8.333 \mathrm{~m} / \mathrm{s} & +v_{0} & & \\
& & & =1533+7.2 \\
& & &
\end{array}
\end{array}
$$

