While taking off, a plane is flying at a $76 \mathrm{~m} / \mathrm{s}$ at 25° above the horizontal. When it reaches an altitude of 550 m it releases a surprisingly aerodynamic pumpkin which falls to the ground.
a) How long does it take to hit the ground?
b) What is its total final impact velocity?

$V_{x}=76 \cos 28^{\circ}$
$=68.88 \mathrm{~m} / \mathrm{s}$

V
$v_{p o}=32.12 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$d_{4}=-550 \mathrm{~m}$
$t=$

$$
\text { a) } \begin{aligned}
V & =V_{0}^{2}+2 \mathrm{ad} \\
V & = \pm \sqrt{(32.12)^{2}+2(-9.8)(-550)} \\
& =-108.7 \mathrm{~m} / \mathrm{s} \\
V & =V_{0}+a t \\
t & =\frac{V-V_{0}}{a}=\frac{-108.7-32.12}{-9.8}
\end{aligned}
$$

b) $V_{x}=68.88 \mathrm{~m} / \mathrm{s}$

$$
t=14.37 \mathrm{~s}
$$

$$
=145
$$

b.)

