A skier skis horizontally off of a 72 m high cliff at $4.0 \mathrm{~m} / \mathrm{s}$. Find
a. The amount of time it takes to reach the ground.
b. How far away from the base of the cliff he lands.
c. His total impact speed.

$d_{x}=v_{x}+$

$$
=15 \mathrm{~m}
$$

V_{T}

$$
V_{y}=V_{y_{0}}+a t
$$

$$
V_{y}=-37.57 \mathrm{~m} / \mathrm{s}=0+-9.8(3.833)
$$

$$
=-37.57 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& V_{T}^{2}=V_{x}^{2}+V_{y}^{2} \\
& V_{T}=\sqrt{V_{x}{ }^{2}+V_{y}{ }^{2}}=\sqrt{4.0^{2}+(-37.57)^{2}}=38 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

True or False

1) As the skier falls, the angle that his velocity makes below the horizontal is always increasing.
2) If the skier were to fall from a high enough cliff, he would eventually be falling straight downwards.
