Quiz $2 c$
Two forces act on a 4.0 kg block as shown below. As a result the block accelerates due north.
a) Find the magnitude of the unknown force.
b) Find the magnitude of the accleration.

a.) Since the acceleration is due North then $\sum F_{x}=0$ (ie. There is no side to side acceleration \therefore no net force)

$$
\sum F_{x}=F_{1 x}+F_{2 x}=0 \quad \therefore \quad F_{1 x}=-F_{2 x}
$$

$$
\begin{aligned}
F_{2 x} & =F_{2} \sin 40=-7.713 \mathrm{~N} \\
\therefore F_{1 x} & =-(-7.713 \mathrm{~N}) \\
& =7.713 \mathrm{~N}
\end{aligned}
$$

$$
\sin 5 s=\frac{F_{1 x}}{F_{1}}
$$

$$
F_{1}=\frac{F_{x}}{\sin 55}=\frac{7.713}{\sin 55}=9.42 \mathrm{~N}
$$

b.)

$$
\begin{aligned}
\Sigma F_{y} & =F_{1 y}+F_{2 y} \\
& =F_{1} \cos 55+F_{2} \cos 40^{\circ} \\
& =9.42 \cos 55+12 \cos 40^{\circ} \\
& =14.60 \mathrm{~N} \\
F_{\text {net }} & =F_{y}=m a \quad a
\end{aligned}
$$

