A plane flies that can fly with an airspeed of $135 \mathrm{~m} / \mathrm{s}$ points towards a heading of 35° S of W . A $30 \mathrm{~m} / \mathrm{s}$ wind blows at $40^{\circ} \mathrm{N}$ of W. What is the total velocity of the plane relative to the ground?

2 Solutions
(1) Trig Method

$$
\begin{array}{rlr}
V_{R}^{2} & =V_{1}^{2}+V_{2}^{2}-2 V_{1} V_{2} \cos 105^{\circ} & \frac{\sin \theta}{30}=\frac{\sin 105}{145.68} \\
V_{R} & =\sqrt{135^{2}+30^{2}-2(135)(30) \cos 105} & \theta=11.5^{\circ} \\
& =146 \mathrm{~m} / \mathrm{s} \quad & \alpha \\
& =35^{\circ}-11.5^{\circ} \\
& =23.5^{\circ}(5 . f \mathrm{~W})
\end{array}
$$

(2) Component Method

$$
\begin{aligned}
& V_{1 x}=135 \cos 35^{\circ}=-110.59 \mathrm{~m} / \mathrm{s} \quad V_{2 x}=30 \cos 40=-22.98 \mathrm{~m} / \mathrm{s} \\
& V_{1 y}=135 \sin 35=-77.43 \mathrm{~m} / \mathrm{s} \quad V_{2 y}=30 \sin 40=19.28 \mathrm{~m} / \mathrm{s} \\
& \sum V_{x}=V_{1 x}+V_{2 x}=-110.59-22.98=-133.57 \mathrm{~m} / \mathrm{s} \\
& \sum V_{y}=V_{1 y}+V_{2 y}=-77.43+19.28=-58.15 \mathrm{~m} / \mathrm{s} \\
& V_{y}=-58.15 V_{\mathrm{n} / \mathrm{s}}=-133.57 \mathrm{n} / \mathrm{s} \\
& V_{k},-\frac{V_{R}}{} \\
& V_{R}=\sqrt{V_{x}^{2}+V_{y}^{2}}=\sqrt{(-133.57)^{2}+(-58.15)^{2}}=146 \mathrm{~m} / \mathrm{s} \\
& \theta=\tan ^{-1}\left(\frac{58.15}{133.57}\right)=23.5^{\circ} \mathrm{Sof} \mathrm{~W}
\end{aligned}
$$

