A 65 kg clown rides along a 25 kg beam. What is the tension in the rope at the end of the beam and the supporting force provided by the hinge?

$$
\begin{aligned}
& \tau_{c}=\tau_{c c} \\
& F_{g_{1}} d_{1}+F_{g_{2}} d_{2}=T d_{3} \\
& T=\frac{F_{1} d_{1}+F_{g_{2}} d_{2}}{d_{3}}=\frac{(637)(4.8)+(245)(6.0)}{12} \\
& =377 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\sum F_{y}= & T+F_{y}-F_{g_{1}}-F_{g_{2}}=0 \\
F_{y} & =F_{g_{1}}+F_{g_{2}}-T \\
& =637+245-377 \\
& =505 \mathrm{~N}
\end{aligned}
$$

