A ball is rolled up an incline at $6.2 \mathrm{~m} / \mathrm{s}$. After 2.4 s the ball is rolling back down the hill at $3.8 \mathrm{~m} / \mathrm{s}$.
a. What is the ball's acceleration?
b. What is the ball's displacement after 2.4 s ?

a.)

$$
\begin{array}{ll}
V=-3.8 \mathrm{~m} / \mathrm{s} \text { rolling down hill } & \\
V_{0}=6.2 \mathrm{~m} / \mathrm{s} & V=v_{0}+a t \\
a= & a=\frac{v-v_{0}}{t}=\frac{-3.8-6.2}{2.4} \\
d= & \\
t=2.4 \mathrm{~s} & \\
t & \\
&
\end{array}
$$

b.)

$$
\begin{aligned}
& v=-3.8 \mathrm{~m} / \mathrm{s} \\
& v_{0}=6.2 \mathrm{~m} / \mathrm{s} \\
& a=-4.167 \mathrm{~m} / \mathrm{s}^{2} \\
& d= \\
& t=2.4
\end{aligned}
$$

$$
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a d \\
d & =\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{(-3.8)^{2}-(6.2)^{2}}{2(-4.167)} \\
& =2.88 \mathrm{~m}
\end{aligned}
$$

