Quiz 7b

A 95 kg astronaut stands on the surface of a spherical asteroid with a mass of $4.5 \times 10^{15} \mathrm{~kg}$ and radius of 3.2×10^{3} m . At what speed would he have to launch in order to escape the gravitational pull of the asteroid.

$$
E_{k_{f}}=0
$$

(Escape velocity $=$ minimum speed)
$E_{p_{f}}=O \quad($ because r is $)$
$r_{f}=$ really, veal, ridiculously far away

$$
\begin{aligned}
& \Delta E_{p}=-\Delta E_{k} \\
& E_{p_{A}}-E_{p_{i}}=+\left(E_{k_{f}}+E_{k_{i}}\right) \\
& +\left(+\frac{G_{m_{1} m_{2}}}{r}\right)^{r}=\frac{1}{2} m_{m_{2}} v^{2} \\
& \frac{G m_{1}}{r}=\frac{1}{2} v^{2} \\
& V=\sqrt{\frac{2 G_{m_{1}}}{r}} \\
& =\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(4.5 \times 10^{15}\right)}{3.2 \times 10^{3}}} \\
& =\sqrt{14 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

