Quiz $6 b$
A 1450 kg satellite orbits the Earth at an altitude of $7.2 \times 10^{5} \mathrm{~m}$. Determine its total energy.

$$
\begin{aligned}
E_{p} & =-\frac{G m_{1} m_{2}}{r} \\
& =-\frac{\left(6.67 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)(1450)}{7.1 \times 10^{6}} \\
& =-8.15 \times 10^{10} \mathrm{~J}
\end{aligned}
$$

$$
\begin{array}{rlrl}
a_{c} & =9 \\
\begin{aligned}
\frac{v^{2}}{r} & =\frac{G_{m}}{r^{u}} & E_{k} & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} \frac{G_{m} m_{2}}{r} & & E_{T}
\end{aligned}=E_{p}+E_{k} \\
& & =\frac{1}{2}-\frac{1}{2} E_{p} \\
v^{2} & \left.=\frac{G m}{r}\right) & & \\
& & & =-4.07 \times 10_{p} \\
& & & =-40 \mathrm{~J}
\end{array}
$$

