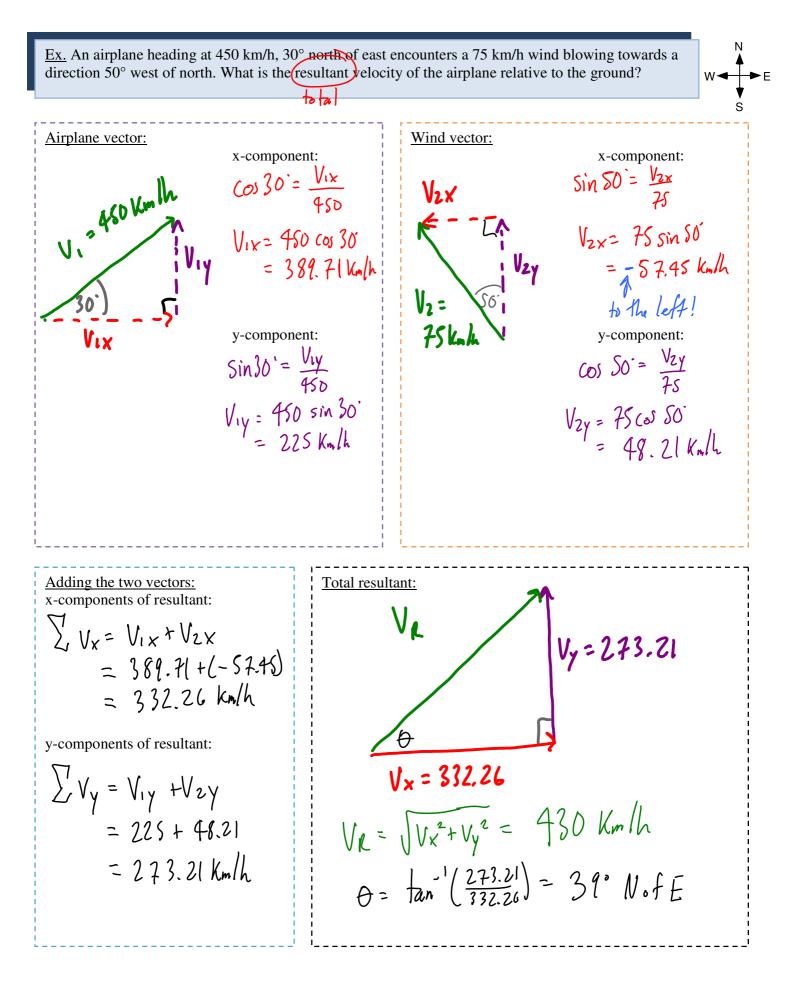


<u>Vectors and Kinematics Notes</u> **4 – Vector Addition and Subtraction**

oreig	SCALAR	VECTOR	Vector Addition
	Speed	Velocity	Whenever we add vectors we use
	true	displacement	tip to tail method
	distance	acceleration	To find the total or resultant vector, simply draw
	mass	force	an arrow from the start to
	temperature	momentum	the finish
\	When we draw vectors	we represent them as	
-	arrows		
Ex: A student in a cance is trying to cross a 45 m wide river that flows due East at 2.0 m/s. The student can paddle at 3.2 m/s a. If he points due North and paddles how long will it take him to cross the river? $V_{y} = \frac{1}{F1} + \frac{1}{F} = \frac{1}{4y} = \frac{45m}{32ml_s} = \frac{14s}{14s}$ b. What is his total velocity relative to his starting point in part a? $V_{river} = 20mk$ $V_{R}^{2} = V_{vas}t^{2} + V_{river}$ $V_{R} = \frac{1}{\sqrt{(3.2)^{2} + (2.0)^{2}}} = 3.77ml_{T} = \frac{3.8nk}{100000000000000000000000000000000000$			
d.]	$V_{boat}^2 = V_R^2 + V_v$	im to cross the river at this heading river $V_{R} = \sqrt{V_{praf}^{2}}$ $f = \frac{d_{y}}{V_{y}} = \frac{45 \text{ m}}{2.50 \text{ m/s}} =$	$-V_{viver}^{2} = \int (3.2)^{2} - (2.0)^{2} = 2.50 m/s$

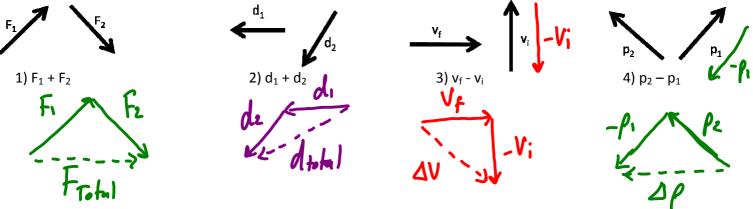
Vector Addition - Trig Method

In the previous example we added perpendicular vectors which gave us a nice simple right triangle. In reality it's not always going to be that easy.

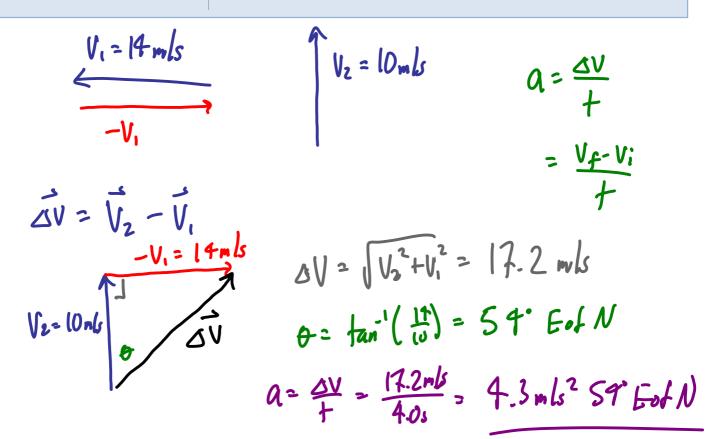

Vector Addition – The Component Method

There is another method that we can use when adding vectors. This method is a very precise, stepwise approach, however it is the only way we can add 3 or more vectors.

- Draw each vector
- Resolve each vector into x and y components
- Find the **total sum** of x and y vectors
- Add the x and y vectors
- Solve using trig


REMEMBER: When using x and y components...

• up and right are "+" • down and left are "-"



Vector Subtraction

With vectors a negative sign indicates that... if points in the exact opposite direction When subtracting vectors we still draw them *tip to tail*, except... We reverse the negative vector We generally subtract vectors when dealing with a <u>Change</u> in a vector quantity. Recall: Change = final - initial $\overrightarrow{U} = \overrightarrow{V_f} - \overrightarrow{V_i}$ Draw the Following

<u>Ex</u>: A cyclist is traveling at 14 m/s west when he turns due north and continues at 10 m/s. If it takes him 4.0 s to complete the turn what is the magnitude and direction of his acceleration?

Summary of Methods Say we want to add two vectors $\vec{d}_1 + \vec{d}_2$ s d, d_z You have 2 choices 2.) Component Method 1) <u>Trig Method</u> Just add them! d. dzy d total hhal dy total dx distal dix d_{zx}