Vector and Kinematics Notes
 3 - Graphs

There is certain information that can be taken from position vs. time (d vs. t) and velocity vs. time (v vs. t) graphs.
For Example:

$$
\text { slope }=\text { velocity }
$$

Given the information from the \mathbf{v} vs. \mathbf{t} graph we can complete the \mathbf{x} and \mathbf{a} vs. \mathbf{t} graphs

In Physics 12 you will be expected to perform more advanced graphical analysis on tests and in labs. EVERY time you make a graph you should follow the following rules.

- Label the axis .
lated variable on the x -axis
\rightarrow Manipulated variable on the y-axis
- Give the graph an appropriate title
- Scale each axis $\quad \underset{\sim}{>}$ Use... as much grid as possible
$>$ Choose a scale that is...easy to read
$>$
- Plot the points and draw a \qquad best fit curve
- Determine if the curve is \qquad or not

Finding Slope

To find the slope of a straight line:

- Choose... 2 points
- Choose them as.as far apart as possible
- Use only..points on the line No DATA POINTS!
Remember the equation of a line is:

$$
y=m x+b
$$

Determine the slope and y-intercept of the graph shown and write the equation describing

$$
\begin{aligned}
& \text { this line. } \\
& \begin{aligned}
\text { slope } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{0.44 \mathrm{~V}}{0.20 \mathrm{~A}} \\
& =2.2 \mathrm{~V} / \mathrm{A} \\
y \text {-int } & =0
\end{aligned}
\end{aligned}
$$

Ex 1: A car starts at a certain speed and accelerates uniformly. A student collects data of velocity at different displacements.

v	d
\vdots	$v^{2}=v_{0}^{2}+2 a d$
\vdots	so $\quad v^{2} \alpha d$

Curve Straightening
Ex 2: An astronaut standing on an asteroid measures the force of gravity acting on a 10 kg mass at different distances from the center of the asteroid.

Ex 3: A student pushes a wooden block over a rough surface with different amounts of force and measures the acceleration each time. $\quad F_{\text {app }}-F_{f}=m a$ $\begin{array}{cc}F_{\text {opp }} \mid a & y=m x+b \\ \vdots \equiv & \text { Fop } \alpha a \\ & F_{\text {app }}=m a+F_{y} \\ \text { slope }\end{array} \quad y$ int

$a\left(n / s^{2}\right)$

