1 - Review

Velocity is defined as the change in displacement with respect to time.
remember
$" \rightarrow "$ means vector
" Δ " means chance in

Note that this formula is only valid for finding constant velocity or average velocity. Also, if acceleration is constant:

$$
V_{\text {avg }}=\frac{V+v_{0}}{2}
$$

Ex: A sprinter runs from the 50.0 m mark to the 100.0 m mark in 4.50 s what is his velocity?

Ex: A car traveling at $22 \mathrm{~m} / \mathrm{s}$ slows down to $14 \mathrm{~m} / \mathrm{s}$ in 3.00 s . What is its average velocity during this time?

$$
V_{\text {avg }}=\frac{V+V_{0}}{2}=\frac{22 \mathrm{~m} / \mathrm{s}+14 \mathrm{~m} / \mathrm{s}}{2}=18 \mathrm{~m} / \mathrm{s}
$$

Whenever an object undergoes acceleration, we need to rely on our 3 kinematics equations. The variables for these are:
v : final velocity
v_{o} : initial velocity
a: acceleration
d : displace mont
t : time
There are three kinematics equations that use these variables.
1)
2)
3)

$$
v^{2}=v_{0}^{2}+2 a d
$$

$$
d=v_{0} t+\frac{1}{2} a t^{2}
$$

$a=V_{0} t+\frac{1}{2} a t^{2}$

Ex: A jet traveling at $65 \mathrm{~m} / \mathrm{s}$ accelerates at $25 \mathrm{~m} / \mathrm{s}^{2}$ for 8.00 s . What is its final velocity?
$V=$?
$V_{0}=65 \mathrm{~m} / \mathrm{s}$
$V=V_{0}+a t$
$a=25 \mathrm{~m} / \mathrm{s}^{2}$

$$
d=\quad=265 \mathrm{~m} / \mathrm{s}
$$

$t=8.00 s$

Ex: A textbook is dropped from a high cliff and hits the ground 3.5 s later. What is the book's displacement?
$v=$
$v_{0}=0 \mathrm{~m} / \mathrm{s}$
$a=-9.80 \mathrm{~m}$
$d=?$
$t=3.5 \mathrm{~s}$

Remember: acceleration due to gravity near the Earth's surface is the same for all objects regardless of mass!!!

$$
g=-9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

Note:
we generally assign up and right as " - " down and left as "-"

Ex: A student throws a ball straight up in the air at $14.2 \mathrm{~m} / \mathrm{s}$.
What is its velocity when it is 6.0 m above its point of release?

$$
\begin{aligned}
& V=? \\
& V_{0}=14.2 \mathrm{~m} / \mathrm{s} \\
& a=-9.80 \mathrm{~m} / \mathrm{s}^{2} \\
& d=6.0 \mathrm{~m} \\
& t= \\
& t
\end{aligned}
$$

$$
\begin{aligned}
V^{2} & =V_{0}^{2}+2 \mathrm{ad} \\
V & =\sqrt{V_{0}^{2}+2 \mathrm{ad}} \\
& =\sqrt{(14.2 \mathrm{~m} / \mathrm{s})^{2}+2(-9.80)(6.0)}
\end{aligned}
$$

Note: Displacements, velocities and accelerations can all be negative because they are vectors, which have both a
\qquad
wait... what? Why is that?

