\qquad
\qquad
Block: \qquad
There is uncertainty in every measurement due to \qquad of accuracy and precision.
Accuracy: how close the instrument measures to an accepted standard (known) values_. Precision: how closely two or more measurements of the same thing agree when measured with equal care by the same instrument.

Each instrument has its own actual uncertainty that can only be obtained by experiment (ie. finding the variation in values from repeated measurements).

How to record a measurement:
Record all digits that are certain
 (ie. all the significant figures).
Then express the uncertainty as a number occupying the same decimal place as the estimated figure.
Example: Rockridge Rugby Field

$$
\omega=35 \pm 2 \mathrm{~m}
$$

$$
L=100.0 \pm 0.5 \mathrm{~m}
$$

Value: Any measured number. Example: 100.0 M
Absolute Error: Error in a value that has the same units as the value. Example: $\pm 0.5 \mathrm{~m}$
Relative Error: \% error (does not contain units!) $=\frac{a b s \text { error }}{\text { value }} \times 100 \%$

$$
\frac{0.5 \mathrm{~d}}{100.0 \mathrm{q}} \times 100 \%=0.5 \%
$$

Rules for calculating with uncertainties:

1. Adding or Subtracting Values (Measurements)
a. Add the absolute errors
2. Multiplying or Dividing Values (Measurements)
a. Add the relative errors
3. Exponents
a. Multiple the Value (Measurement) by the exponent

If Mr. Lawson can mow the rugby field covering $10+/-1 \mathrm{~m}^{2}$ every second, how long will it take him to mow the entire field?

$$
\begin{aligned}
& A=3500 \pm 217.5 \mathrm{~m}^{2} \\
& A / t=10 \pm 1 \mathrm{~m}^{2} / \mathrm{s} \\
& t=\frac{A}{A / t}=\frac{3500 \mathrm{~m}^{2}}{10 \mathrm{~m}^{2} / \mathrm{s}}=350 \mathrm{~s} \\
& t=350 \pm 56.7 \mathrm{~s}
\end{aligned}
$$

$\% A=\frac{217.5 \mathrm{~m}^{2}}{3500 \mathrm{~m}^{2}}=0.062$
$\% A / t=\frac{1 \mathrm{~m}^{2} / \mathrm{s}}{10 \mathrm{~m}^{2} / \mathrm{s}}=0.10$

$$
\% t=\% A+\% A / t=0.062+0.10
$$

$$
=0.162
$$

$$
a b s t=(350 \mathrm{~s})(0.162)=56.7 \mathrm{~s}
$$

Taking Measurements

Purpose:
Name:
Date:
Partners:

Procedure:

1. Using a meter stick determine how large of a step you would have to take for it to be 1 m long.
2. Measure the length of the tennis court by counting your steps. While doing so think of the uncertainty in this method of measurement.
3. Measure the width of the tennis court using a measuring tape. While doing so think of the uncertainty in this method of measurement.
4. Calculate the perimeter and surface area of the tennis court.

Data:

- Data should be written neatly.
- Include a clear description of the data being taken.
- If more than a few data points are taken, use a data table.
- All measurements must include error and appropriate units!

Length of tennis court:
Width of tennis court: \qquad
Calculations:
Calculate the perimeter and area of the tennis court. (you will calculate the error below!)

Uncertainty Analysis:

- Whenever we take measurements they include a certain amount of error. If we use these values in further calculations then the calculated values contain all of the original error. To determine how much error is carried through a calculation we use a process called error propagation.
- Error propagation should always be done under separate heading of your lab manual showing all of your steps!

Perimeter:

> Use the addition rules to determine the absolute error in the perimeter.

Area:
$>$ Relative error for length:
$>$ Relative error for width:

Use the multiplication rule to find the relative error for the area:
$>$ Generally we want to express the final answer with an absolute error. Determine a method to convert from relative error to absolute error and report your final answer. Don't forget to include correct units!

Conclusion:

- Before an experiment can be considered legitimate it must be repeated by other scientists. They must then compare their results to determine if they agree within uncertainty.

Compare your results with at least two other groups and determine whether or not your results agree. In one sentence describe what it means for results agree within uncertainty.

Name:Pepe Le KEY
Date: \qquad
Block: \qquad

Al(Measurements have some degree of uncertainty to them (due to the instrument used.)
To indicate the degree of certainty in a measurement (or a number derived from a measurement), scientists use significant figures. Or numbers they know to be 100% accurate.
** Significant figures are important in the way we report different kinds of data!

rounding errors

- A significant figure is a measured or meaningful digit
A. What is Not Significant?
is NEVER a measured
value that is "PERFECT".
Defined or counting numbers: A number which involves things which cannot realistically be subdivided.
Example:
1 book; 4 students (cannot have 1.5 books or 4.78 students)
Conversion factors are assumed to be an exact relationship (cannot have $1 \mathrm{~kg}=1000.5 \mathrm{~kg}$)

Rules for identifying \# of sig figs:

a) An exact number (e.g. 25 students) has an infinite number of significant figures because the number was not rounded off. Exact numbers are not used to determine the significant digits.
b) For all measurements, the following rules apply to count the number of significant figures a number has.

1. Any digit between $1-9$ is significant.

$$
\begin{array}{r}
\text { e.g. } 234.566 \text { has } 6 \quad \text { sig figs } \\
7.4586 \text { has } \quad 5 \quad \text { sig figs }
\end{array}
$$

2. A ' O ' at the beginning of a number is not significant because it only holds the decimal place. Leading zeros are NOT significant

e.g. 0.00045 has

2 sig figs
0.02333 has \qquad sig figs
3. A ' 0 ' between two other sig figs is significant.
e.g. 50034.03 has 7 sig figs
e.g 534.034201 has \qquad sig figs
4. A ' 0 ' at the end of a number is only significant IF a decimal point occurs in the number otherwise it is not significant. Be careful with this one!

Trailing zeroes are NJT significant UNLESS their's a decimal!! e.g. 750000 has 2 sig figs

20000000 has \qquad sig fig e.g. 750.000 has 6 sig figs

Example:
If a balance gives a reading of 97.53 g when a beaker is placed on it, the reading is considered to have 4 significant figures. If the beaker is then put on a different balance and gives a reading of 97.5295 g , there are more significant figures to the measurement (6 significant figures).

How many significant figures do each of the following measurements have?

B. Scientific Notation

Scientific Notation is a way of writing numbers for values too large or small to be conveniently written in standard decimal notation.

Example:

$$
\begin{aligned}
& 10=1.0 \times 10^{1} \\
& 25=2.5 \times 10^{1} \\
& 250=2.5 \times 10^{2} \\
& 0.0000350000=3.5000 \times 10^{-5}
\end{aligned}
$$

Write the following numbers in scientific notation:

\rightarrow proper scientific notation

1. 3570

2. 41.400
3. 0.000572
.-1-1-1 $=-4$
4. 41.50×10^{-4}
5. 0.000410×10^{7}

4.1400×10^{-4}
5.72×10^{-4}

$$
4.150 \times 10^{-3}
$$

SHould

digits that are Significant!!"禺解 Bad scientific notation!
C. Adding or Subtracting Significant Figures

When adding or subtracting significant figures, round off the answer to the least number of decimal places contained in the calculation.

Example:
OR L WORST VALUE PLACE?
$12.56 \mathrm{~cm}(2$ SF after decimal) $+125.8 \mathrm{~cm}(1$ SF after decimal) $=138.36 \mathrm{~cm} \rightarrow 138.4 \mathrm{~cm}$ (1 SF after decimal)
Exercise:
3. $4.5510^{-5}+3.1 \times 10^{-5}$ "worstralue" place.

Multiplying or Dividing Significant Figure
When multiplying or dividing significant figures, round off the answer to the least number or signineant figures contained in the calculation.

FINAL ANSWER!
Example:

$$
2.00(3 S F) \times 3.00000(6 S F)=6.00(3 S F)
$$

Exercise:

1. 12.5×0.50 \qquad can only have \qquad
2. $\frac{0.15}{2} \times \frac{0.0016}{2}$ \qquad 2.4×10^{-4} or 0.00024
3. $\frac{40.0}{3} / 30.000$

4. $\frac{2.5}{2} \times 7.500 / 0.150$ \qquad
5. $\frac{4.37}{3} \times 103 / 0.008 \frac{5600}{5}$
6. $\underset{2}{0.51} \times 10^{-4} / \underset{1}{6 \times 10-7}$

7. $0.00001 / 0.1000$

Summary Practice Exercises:
In the following mixed calculations, perform multiplications and divisions before doing the additions and subtractions. Keep track of the number of significant figures at each stage of a calculation.

BEDMAS

1. $25.00 \times 0.100-15.87 \times 0.1036$

2. $(\underbrace{0.865}_{0.865-0.800} \times(\underbrace{1.593+9.04}_{10.63})$

3. $(0.3812-0.4176) /(0.0159-0.0146$

4. $9.34 \times 0.07146-6.88 \times 0.08115$

$$
0.667-0.558 \Rightarrow
$$

D. Reading A Scale

The number of significant figures is equal to all the certain digits PLUS the first uncertain digit.

In the figure to the left, the liquid level is somewhere between 24 mL and 25 mL . You know that it is at least 24 mL so you are "certain" about the first two digits.

As a guess, it could be 24.9 mL . There is some significance to the last digit but but not completely certain. For example, there are the reading is not 24.1 mL . As a result, there are two certain digits, (2 and 4) and one uncertain (9).

Significant Figures Worksheet Key

1. Indicate how many significant figures there are in each of the following measured values.

246.32	5	1.008	4	700000	1
107.854	6	0.00340	3	350.670	6
100.3	4	14.600		5	1.0000
0.678	3	0.0001	1	320001	5

Instructors Initials \qquad
2. Calculate the answers to the appropriate number of significant figures.

32.567	246.24	658.0
135.0	238.278	23.5478
$+\quad 1.4567$	+98.3	$+\quad 1345.29$
169.0	582.8	2026.8

Instructors Initials \qquad
3. Calculate the answers to the appropriate number of significant figures.
a) 23.7×3.8
$=90$.
f) $1.678 / 0.42=4.0$
b) 45.76×0.25
$=11$
g) $28.367 / 3.74$
$=7.58$
c) $81.04 \mathrm{~g} \mathrm{x0.010}=0.81$
h) $4278 / 1.006=4252$
d) 6.47×64.5

$$
=417
$$

11.5
e) $43.678 \times 64.1=2.80 \times 10^{3}$
i) $(6.8+4.7) \times 17.44=-201$
297
j) $(320 .-22.7) \times 3.8=$ \qquad
28.6
61.25
k) $\frac{(14.86+13.7) \times(65.346-4.10)}{(43.888-32.888)}$
$=$ 159
\qquad
\qquad
\qquad
Sig Figs \& Units Worksheet

1. How many significant figures are there in each of the following?
a. $273.16 \quad 5$
e. 2,000,000 \qquad 1
i. 5280. \qquad
b. 186,000 \qquad f. $13.8 \quad 3$
j. 708.003 \qquad
c. 505 \qquad 3
g. 0.00928 \qquad 3
k. 0.0652 \qquad 3
d. 1000 \qquad 1
l. 3.040×10^{5}
2. In the following, convert numbers in common notation to scientific notation, or vice versa.
a. 93,000,000 \qquad 9.3×10^{7}
b. 0.000019 \qquad 1.9×10^{-5}
d. 2.997×10^{10} \qquad 29,970,000,000
c. 606.39 \qquad 6.0639×10^{2}
e. $6.02 \times 10^{-5} 0.0000602$
c. 606.39
f. 2.5359×10^{2} 253.59
3. In the following, how many decimal places will the solution have? DO NOT SOLVE.
a. $6.0 \mathrm{~m}+10.73 \mathrm{~m}+111.250 \mathrm{~m}$ \qquad d. $93.4 \mathrm{~cm}+10.975 \mathrm{~cm}$ \qquad
b. $4050 \mathrm{~L}-2.06 \mathrm{~L}$ \qquad 0
e. $0.005070 \mathrm{~cm}+6.90 \mathrm{~cm}+2000.860 \mathrm{~cm}$ \qquad
c. $\quad 96.75 \mathrm{~km}+108.43 \mathrm{~km}+77 \mathrm{~km}$ \qquad 0
f. $10.970 \mathrm{~mL}-5.0 \mathrm{~mL}$ \qquad
4. In the following, how many digits should be in the solution to have the proper number of sig figs?

DO NOT SOLVE.
a. $(797.6 \mathrm{~m})(54 \mathrm{~m})$ \qquad d. $93.4 \mathrm{~m} \div 10.975 \mathrm{~m}$ \qquad 3
b. $(851 \mathrm{~cm})(24.3 \mathrm{~cm}) \quad 3$
e. $\left(6.02 \times 10^{23} \mathrm{~m}\right)(12.00 \mathrm{~m})\left(1.660 \times 10^{-24} \mathrm{~m}\right)$ \qquad
c. $1075 \mathrm{~kg} \div 15 \mathrm{~L}$ \qquad 2
f. $(453.6 \mathrm{~m})\left(9.050 \times 10^{4} \mathrm{~m}\right)(239.1 \mathrm{~m})$ \qquad
Solve the following problems, expressing the answer in the proper number of sig figs.
5. Express the sum of $20.6 \mathrm{~mm}, 49.5 \mathrm{~cm}$ and 5.03 m in meters

$$
\begin{array}{r}
5.03 \\
+\quad 0.495 \\
+\quad 0.0206 \\
\hline 5.5456
\end{array}
$$

6. If 22.5 L of gasoline is drawn from a tank originally containing 65 L of gasoline, what volume of gasoline remains in the tank?

$$
\begin{array}{r}
65 \\
-22.5 \\
\hline 425
\end{array} 432
$$

7. What is the area of the bottom of a tank 30.0 cm long and 15.0 cm wide?

$$
30^{3} .0 \mathrm{~cm} \times 15^{3} 0 \mathrm{~cm}=\frac{450 . \mathrm{cm}^{2} \text { or }}{4} 4.50 \times 10^{2} \mathrm{~cm}
$$

8. If the tank in Problem 7 has a volume of $2.25 \times 10^{4} \mathrm{~cm}^{3}$, what is its height?

$$
h=\frac{V}{A}=\frac{2.25 \times 10^{4} \mathrm{~cm}^{3}}{450 . \mathrm{cm}^{2}}=50.0 \mathrm{~cm}
$$

9. How many centimeters are there in 35.0 inches? 1 inch $=2.54 \mathrm{~cm}$

$$
35.0 \text { inches } \times \frac{2.54 \mathrm{~cm}}{1 \text { inch }}=88.9 \mathrm{~cm}
$$

10. What is the distance, in kilometers, of a 2.5 mile cross-country course? $1 \mathrm{mi}=1.6 \mathrm{~km}$

$$
2.5 \mathrm{mi} \times \frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}=4.0 \mathrm{~km}
$$

Math Review

Fill in the following table for the following quantities and their symbols:

Quantity	Unit	Symbol
length	meters	m
mass	Kilograms	K
time	secohds	s
force	Newtons	N
energy	Joules	J
power	Watts	W
speed	Metenper seall m / s	
frequency	Hert2	H 2

Complete the following conversions

```
1. \(4 \mathrm{~km}=4000 \mathrm{~m}\)
2. \(54 \mathrm{~mm}=0.054 \mathrm{~m}\)
3. \(\quad 0.394 \mathrm{Mg}=394000 \mathrm{~g}\)
4. \(4000 \mathrm{~ms}=4\)
5. \(4 \mathrm{dl}=0.4 \mathrm{l}\)
6. 70_dam (deka meters) \(=700\)
```

\qquad

``` m
7. \(4 G g=1 \times 10^{11} \mathrm{cg}\)
8. \(\sim 9000000 \mu \mathrm{~m}=0.009\)
``` \(\qquad\)
``` km
9. \(4000 \mathrm{~s}=1.11 \mathrm{~h}\)
10. \(67 \mathrm{~m}^{2}=670000 \mathrm{~cm}^{2}\)
```

```
Example 1:
\(3000 \mathrm{~cm}=\)
```

\qquad

``` km
\(3000 \mathrm{~cm} \times(1 \mathrm{~m}) \times(1 \mathrm{~km})=0.03 \mathrm{~km}\)
\((100 \mathrm{~cm})(1000 \mathrm{~m})\)
```

Example 2:
$3 \mathrm{~m}^{3}=$ \qquad cm^{3}
$3 \mathrm{~m}^{3} \times \frac{(100 \mathrm{~cm})^{3}}{(1 \mathrm{~m})^{3}}=3 \mathrm{~m}^{3} \times \frac{\left(1000000 \mathrm{~cm}^{3}\right)}{\left(1 \mathrm{~m}^{3}\right)}=3000000 \mathrm{~cm}^{3}$

Rounding:

5 and up \rightarrow round up
$4.55 \rightarrow 4.6$
4 and down \rightarrow round down
$4.54 \rightarrow 4.5$

Significant Figures:

All non-zero numbers count.
Zeros to the left never count.
Zeros in the middle always count.
Zeros to the right count only if there is a decimal in the number.
Example: $\quad 0.00050600 \quad$ This number has 5 sig figs because the four zeros to the left of the 5 don't count. The 5 and 6 count. The 0 in the middle counts. The two zeros to the right of the 6 count because there is a decimal in the number.

Example: $\quad 567,000 \quad$ This number has 3 sig figs because the 5,6 , and 7 count, but the zeros to the right do not count since there is no decimal in the number.

Round the following numbers to 2 sig figs:

1. $\quad 35.67 \rightarrow$
2. $\quad 0.0004567 \rightarrow$
36 \qquad
3. $0.0102 \rightarrow$
4. $99536 \rightarrow$
5. $1.0326 \rightarrow$
6. $156.21 \rightarrow$
7. $9.75 \rightarrow$

Multiplication / Division: This is the most common rule for sig figs we will be using. Use this for all multiplication or multifunction equations. Use the lowest number of total sig figs in your equation for your answer.
Example: $\quad 6.5 \mathrm{~m} \times 687.3 \mathrm{~m}=4467.645 \mathrm{~m}$, but because of sig figs, your answer will be $4.5 \times 10^{3} \mathrm{~m}$
(2)
(4)
(7)
(2)

Addition / Subtraction: If you have a situation where you are only using addition and / or subtraction you should use this rule for sig figs. Look at the number of decimal places and use the smallest number of decimal places in your answer.
Example: $\quad 3.456 \mathrm{~s}+22.55 \mathrm{~s}=26.006 \mathrm{~s}$, but because of sig figs, your answer will be 26.01 s .
(3)
(2)
(3)

Solve the following equations and leave the answers with the correct number of sig figs:

1. $23+4.8=28$
2. $\quad 234.67 \times 34=-8.0 \times 10^{3}$
3. $4567 / 2.45=1860$
4. $2.56+0.89=3.45$
5. $2345.8 \times 23.2=54400$

Percent Uncertainty:

If something is measured to be $12.3 \mathrm{~cm}+/-0.5 \mathrm{~cm}$. What is its percent uncertainty?
$0.5 \mathrm{~cm} \times 100 \%=4 \%$ uncertainty
12.3 cm

It is important to know how big the uncertainty is compared to the actual measurement. 0.5 cm error would be a lot if your measurement was only 2.1 cm ! That would amount to an error of 24% instead of only 4% ($0.5 / 2.1$) $\times 100 \%=24 \%$

To emphasize this point, consider this; 1 cm error when you are measuring 100000 cm isn't much, therefore almost negligible. Your calculated $\%$ error would be low. 1 cm error when you are measuring only 10 cm is a concern. Your \% error would be much higher.

Trigonometry:

a) Right Angle Triangles

$$
\begin{aligned}
& \sin \theta=a / c \\
& \cos \theta=b / c \\
& \tan \theta=a / b
\end{aligned}
$$

Pythagorean Theorem:

$$
c^{2}=a^{2}+b^{2}
$$

b) Other Triangles

b

Sine Law: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
Cosine Law:
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Say this..." ...times ten to the...".
Pressing $2 n \quad$ EE on your calculator is the equivalent of saying " times ten to the".
So, how do you enter 4×10^{5} into your calculator.
You would say this in the following way " 4 times ten to the 5 ".
You would enter into your calculator the following....
\square 2nd
EE 5

Enter these problems into your calculator...

Your answer should be...? $7,8 \times 10^{9}$
$\left(3.9 \times 10^{-7}\right) \times\left(2 \times 10^{2}\right)$

Your answer should be...? 7.8×10^{-5}
$\left(-3.9 \times 10^{-7}\right) \times\left(2 \times 10^{2}\right)$

$(-)$	3	..	9	2nd	EE	(-)	7	x	2	2nd	EE	2	enter

Your answer should be...? -7.8×10^{-5}

Use your calculator to answer the following....

$\left(3 \times 10^{3}\right) \times\left(2 \times 10^{2}\right)=6 \times 10^{5}$
$\left(3 \times 10^{3}\right)+\left(2 \times 10^{-2}\right)=3.00002 \times 10^{3}$
$\left(-3 \times 10^{-3}\right) /\left(2 \times 10^{2}\right)=-1.5 \times 10^{-5}$
$\left(3 \times 10^{3}\right)-\left(2 \times 10^{2}\right)=2.8 \times 10^{3}$
$\left(3 \times 10^{3}\right) \times\left(2 \times 10^{-2}\right)=6 \times 10^{1}$
$\left(-3 \times 10^{-3}\right) \times\left(2 \times 10^{2}\right)=-6 \times 10^{-1}$

AP Physics 1 Summer Assignment

1. Scientific Notation:

The following are ordinary physics problems. Write the answer in scientific notation and simplify the units ($\pi=3$).
a. $T_{s}=2 \pi \sqrt{\frac{4.5 \times 10^{-2} \mathrm{~kg}}{2.0 \times 10^{3} \mathrm{~kg} / \mathrm{s}^{2}}}=$

$$
T_{s}=0.0298 \mathrm{~S}
$$

b. $\quad F=\left(9.0 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}}\right) \frac{\left(3.2 \times 10^{-9} C\right)\left(9.6 \times 10^{-9} C\right)}{(0.32 \mathrm{~m})^{2}}$

$$
F=2.7 \times 10^{-6} \mathrm{~N}
$$

c. $\frac{1}{R_{p}}=\frac{1}{4.5 \times 10^{2} \Omega}+\frac{1}{9.4 \times 10^{2} \Omega}$

$$
R_{p}=304.3 \Omega
$$

d. $\quad K_{\max }=\left(6.63 \times 10^{-34} J \cdot s\right)\left(7.09 \times 10^{14} s\right)-2.17 \times 10^{-19} J$ $K_{\max }=2.53 \times 10^{-19} \mathrm{~J}$
e.

$$
=1 / \sqrt{1-\frac{2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}}
$$

$$
r=2
$$

f. $\quad K=\frac{1}{2}\left(6.6 \times 10^{2} \mathrm{~kg}\right)\left(2.11 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}=$

$$
K=\frac{1.46 \times 10^{11} \mathrm{kgm}^{2}}{\mathrm{~S}}
$$

g. $(1.33) \sin 25.0^{\circ}=(1.50) \sin \theta$

$$
\theta=2.20^{\circ}
$$

2. Solving Equations:

Often problems on the AP exam are done with variables only. Solve for the variable indicated. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers.
a. $\quad K=\frac{1}{2} k x^{2}$

$$
, x= \pm \sqrt{\frac{2 k}{k}}
$$

b. $\quad T_{p}=2 \pi \sqrt{\frac{\ell}{g}}$

$$
, g=\frac{4 \pi^{2} \ell}{T_{p}}
$$

c. $\quad F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$

$$
, r= \pm \sqrt{\frac{G m_{1} m_{2}}{F_{g}}}
$$

d. $\quad \eta / g h=\frac{1}{2} n / v^{2}$
,$v=\sqrt{2 g h}$
e. $x=x_{o}+v_{o} t+\frac{1}{2} a t^{2} \quad, t=$ \qquad

$$
t=\frac{-v_{0} \pm \sqrt{v_{0}^{2}-4\left(x_{0}-x\right) \frac{a}{2}}}{a}
$$

quadratic
f. $B=\frac{\mu_{o}}{2 \pi} \frac{I}{r}$

$$
, r=\frac{\mu_{0} I}{2 \pi B}
$$

g. $\quad x_{m}=\frac{m \lambda L}{d} \quad, d=\frac{m \lambda L}{x_{m}}$
h. $p V=n R T \quad, T=\frac{p \vee}{n R}$
i. $\sin \theta_{c}=\frac{n_{1}}{n_{2}} \quad, \theta_{c}=\sin ^{-1}\left(n_{1}\right)-$
j. $\quad q V=\frac{1}{2} m v^{2} \quad, v=\sqrt{\frac{2 q V}{m}}$

3. Conversion

Science uses the $\boldsymbol{K M S}$ system (SI: System Internationale). KMS stands for kilogram, meter, second. These are the units of choice of physics. The equations in physics depend on unit agreement. So you must convert to $\boldsymbol{K M S}$ in most problems to arrive at the correct answer.
kilometers (km) to meters $(m) \quad$ and meters to kilometers
centimeters (cm) to meters (m) and meters to centimeters
millimeters (mm) to meters (m) and meters to millimeters
nanometers ($n m$) to meters (m) and metes to nanometers
micrometers (μm) to meters (m)
Other conversions will be taught as they become necessary.
gram (g) to kilogram (kg)
Celsius (${ }^{\circ} C$) to Kelvin (K)
atmospheres (atm) to Pascals (Pa)
liters (L) to cubic meters $\left(m^{3}\right)$

What if you don't know the conversion factors? Colleges want students who can find their own information (so do employers). Hint: Try a good dictionary and look under "measure" or "measurement". Or the Internet? Enjoy.
a. $4008 \mathrm{~g}=4.008 \mathrm{~kg}$
b. $1.2 \mathrm{~km}=1200 \mathrm{~m}$
c. $823 \mathrm{~nm}=8.23 \times 10^{-7} \mathrm{~m}$
d. $298 K=25{ }^{\circ} \mathrm{C}$
e. $0.77 \mathrm{~m}=77$
f. $8.8 \times 10^{-8} \mathrm{~m}=8.8 \times 10^{-5} \mathrm{~mm}$
g. $1.2 \mathrm{~atm}=1.22 \times 10^{5} \mathrm{~Pa}$
h. $25.0 \mu \mathrm{~m}=25.0 \times 10^{-6} \mathrm{~m}$
i. $2.65 \mathrm{~mm}=0.00265 \mathrm{~m}$
j. $8.23 \mathrm{~m}=0.00823 \mathrm{~km}$
k. $40.0 \mathrm{~cm}=0.400 \mathrm{~m}$

1. $6.23 \times 10^{-7} \mathrm{~m}=623 \mathrm{~nm}$
m. $1.5 \times 10^{11} \mathrm{~m}=1.5 \times 10^{8} \mathrm{~km}$

4. Geometry

Solve the following geometric problems.
a. Line \boldsymbol{B} touches the circle at a single point. Line \boldsymbol{A} extends through the center of the circle.
i. What is line \boldsymbol{B} in reference to the circle?

ii. How large is the angle between lines \boldsymbol{A} and \boldsymbol{B} ?
\qquad 90°

c. What is angle $\boldsymbol{\theta}$?
d. How large is $\boldsymbol{\theta}$?
30°

b. What is angle \boldsymbol{C} ?
\qquad

150°

