## **Rotational Dynamics**

2 – Rotational Inertia, Angular Momentum and Kinetic Energy

In the previous section we explored the <u>Kinematics</u> of rotational motion, in this section we explore the <u>Oynamics</u> of rotational motion.

Example:

If you open two doors with the same dimensions pushing with the same force, the first made of Balsa wood (160 kg/m<sup>3</sup>) and the second made with Black Ironwood (the densest known wood 1355 kg/m<sup>3</sup>), which door opens faster? Why?

balsa wood -> less mass ... Fuet=ma it has a grater à  $\alpha = \frac{\alpha}{2}$ SF=ma=mra Newton's Second Law:  $\alpha = \alpha \cdot r$ But remember in this unit we also explored <u>torgue</u> !  $7 = F \cdot d$  $= F \cdot r = mr^2 \alpha$ If the force is applied to the edge of a rotating object then  $C_{1} \leq r_{2}$ Rotational Inertia ( **M /** ): effectively tells us the Newton's First Law: States that an for objects moving in a circle to Keep object in motion will 5 tay tendency moving in a circle. in motion. If Severa This is related to the iner hig objects are moving in a circle we must of their Rotational Inertias to find the total sum of the object. Moment of Inertia (I).  $= \sum mr^2$ Units for moment of inertia are  $\underline{kg \cdot m}^2$ . And because...  $\Sigma = \Sigma mr^2 \cdot \alpha$  $\Sigma = T \cdot \alpha$ 

## **Mass Distribution**



(b) If the merry-go-round is disk-shaped, with a mass of 115 kg and a radius of 1.8 m, calculate the net torque IDike = = = mr<sup>2</sup> acting on the merry-go-round.

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

1 = 600 s

In this unit we have connected our understanding of Linear Kinematics/Dynamics to Rotational Kinematics/Dynamics. Well why stop there!?

| Name:    | Linear Momentum | Angular Momentum       |
|----------|-----------------|------------------------|
| Symbol:  | ρ               | L                      |
| Formula: | $\rho = mv$     | L= Iw-> rad            |
| Units    | Kg m/s          | Kg - m <sup>2</sup> /s |

| Name:    | Linear Impulse   | Angular Impulse        |
|----------|------------------|------------------------|
| Symbol:  | A۵               | al                     |
| Formula: | sp=mov ap=Fret.t | 4L= 2.+                |
| Units:   | kg mls           | ky . m <sup>2</sup> /s |

| Name:    | Linear Kinetic Energy       | <b>Rotational Kinetic Energy</b>                 |
|----------|-----------------------------|--------------------------------------------------|
| Symbol:  | Εĸ                          | Er kg.m <sup>2</sup>                             |
| Formula: | $E_{k} = \frac{1}{2}mv^{2}$ | $E_n = \frac{1}{2} I \omega^2 - (\frac{1}{2})^2$ |
| Units:   | J (ky ** <sup>2</sup> /52)  | J ( Kg* <sup>2</sup> /se)                        |

## Example:

 $E_i < E_i$ 

Suppose that a figure skater has a moment of inertia of 6.5 kg m<sup>2</sup> when her arms are outstretched and 3.8 kg  $m^2$  when her arms are pulled in. She is initially spinning with an angular velocity of 8.2 rad/s with her arms outstretched and then pulls her arms in. What is her final angular velocity?

$$I_i \omega_i = I_f \omega_f$$
  $\omega_f = \frac{I_i \omega_i}{I_f} = \frac{(6.5)(6.2)}{3.8} = 14 \text{ rad/s}$ 

How does her does her initial rotational energy compare to her final rotational energy?  $F \cdot \zeta F \cdot E_n = \frac{1}{2} I \zeta \varepsilon^2$ 

## Example:

A ball is rolled down a ramp with a height of 5.0 m. What is its velocity at the bottom of the ramp?

