Rotational Dynamics
1 - Rotational Kinematics

In Kinematics, we studied motion along a straight line and introduced such concepts as displacement, velocity, and acceleration. Two-Dimensional Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-dimensional kinematics in which the object is projected into the air, while being subject to the gravitational force, and lands a distance away. In the next few sections, we consider situations where the object does not land but moves in a curve.

When objects rotate about some axis, for example, when a CD (compact disc) rotates about its center each point in the object follows a circular arc.
The rotational angle is the amount of rotation and is analogous to linear distance. We define the rotation angle to be the ratio of the arc length to the radius of curvature.

Angular Velocity (ω): A measure of the rate of \qquad change of the \qquad rotational

Note: Units for Angular Velocity are \qquad rads

Example:
Calculate the angular velocity of a 0.300 m radius car tire when the car travels at about $54 \mathrm{~km} / \mathrm{h}$. $\div 3.6=15 \mathrm{~m} / \mathrm{s}$

$$
\omega=\frac{v}{r}=\frac{15 \mathrm{mms}}{0.30 \mathrm{~s}}=50 \mathrm{rd} / \mathrm{s}
$$

What would the angular velocity be for a car traveling at the same speed that had tires which were four times larger?

$$
\omega=\frac{v}{r} \quad \omega \alpha \frac{1}{r}
$$

$$
\begin{aligned}
& \omega_{1}=\frac{V_{1}}{r_{1}}=50 \\
& \omega_{2}=\frac{V_{2}}{4 r_{1}}=\frac{50}{4}=12.5 \mathrm{ral} / \mathrm{s}
\end{aligned}
$$

Angular Acceleration (α): the rate of change of angular Velocity

Example:
Suppose a Rockridge student puts their bicycle on a stand and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm (revolutions per minute) in 5.00 s .
(a) Calculate the angular acceleration in $\mathrm{rad} / \mathrm{s}^{2}$. (Hint: how many rad's are there in 1 revolution?)

$$
250 \frac{r^{2}(\operatorname{rev} ?)}{\min } \times \frac{2 \pi}{r s 0} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=26.18 \mathrm{rad} / \mathrm{s}
$$

$$
\begin{aligned}
\alpha & =\frac{\Delta \omega}{t}=\frac{(26.18-0)}{5.00} \\
& =5.236=5.2 \mathrm{rac} / \mathrm{s}^{2}
\end{aligned}
$$

(b) If they now slam on the brakes, causing an angular acceleration of $-87.3 \mathrm{rad} / \mathrm{s}^{2}$, how long does it take the wheel to stop?

$$
\alpha=\frac{\Delta \omega}{t} \quad t=\frac{\Delta \omega}{\alpha}=\frac{(0-26.18)}{-87.3}=0.30 s
$$

But what about the connection between circular motion and linear motion?

The good news is our understanding of linear kinematics allows us to explore rotational kinematics.

Rotational	Translational
$\theta=\bar{\omega} t$	$x=\bar{v} t$
$\omega=\omega_{0}+\alpha t$	$v=v_{0}+a t$
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$	$x=v_{0} t+\frac{1}{2} a t^{2}$
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$	$v^{2}=v_{0}^{2}+2 a x$

Example: A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel. The whole system is initially at rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is given an angular acceleration of $110 \mathrm{rad} / \mathrm{s}^{2}$ for 2.00 s .
a) What is the final angular velocity of the reel?
$\omega=$
$\omega_{u}=0$
$\alpha=110$
$\theta=$
$t=2.00$
c) How many revolutions does the reel make?

$$
\begin{aligned}
& \theta=4 s_{0} q+\frac{1}{2} \alpha t^{2} \\
& \left.=\frac{1}{2}(110)(2.00)^{2} \quad \right\rvert\, \mathrm{rrov} 2 \mathrm{rad} \\
& =220 \mathrm{rad} \times \frac{1 \mathrm{rev}}{2 \mathrm{Ht}}=35 \mathrm{rev}
\end{aligned}
$$

b) At what speed is fishing line leaving the reel after 2.00 s elapses?

$$
\begin{aligned}
\omega=\frac{v}{r} \quad & v=\omega \cdot r \\
& =(202)(0.045) \\
& =9.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

d) How many meters of fishing line come off the reel in this time?

$$
\begin{aligned}
\theta & =\frac{\Delta s}{r} \\
\Delta s=\theta \cdot r & =(220)(0.045) \\
& =9.9 \mathrm{~m}
\end{aligned}
$$

