Equilibrium Notes
1 - Translational Equilibrium

Ex.
A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it?

Ex.
Ok that was easy, now that same 20.0 kg object is lifted at a velocity of $4.9 \mathrm{~m} / \mathrm{s}$. What is the net force acting on it?

$$
\begin{aligned}
& a=0 \\
& \therefore \text { that }=0
\end{aligned}
$$

Because in both case the net force on the objects is zero they are said to be in equilibrium. If the object is stationary it is said to be in State equilibrium, while an object moving at a constant velocity is in dynamic equilibrium
These are both case where the object is in \qquad translational equilibrium

Translational motion refers to motion along a line, therefore:

The condition of equilibrium:

Ex.
A sign is suspended using ropes as shown in the diagram. If T_{1} is 100 N , what is the weight of the sign?

Strategy 1: Components

1. Choose a point in the system that is in equilibrium, with all forces acting on it. In this case use The intersection
2. Draw an $F B D$!
3. Break these forces .into components
4. Use...1st condition

$$
\begin{aligned}
\sum F_{x} & =T_{2 x}-T_{1 x}=0 \\
T_{2 x} & =T_{1 x} \\
& =57.36 \mathrm{~N}
\end{aligned}
$$

$$
T_{1 x}=T_{1} \cos 55^{\circ}=57.36 \mathrm{~N}
$$

$$
\begin{aligned}
T_{1 y} & =T_{1} \sin 55^{\circ} \\
& =8197 \mathrm{~N}
\end{aligned}
$$

$$
=100 \mathrm{~N}
$$

$$
=81.92 \mathrm{~N}
$$

$$
\tan 25^{\circ}=\frac{T_{2 y}}{T_{2 x}} \quad F_{y}=T_{1 y}+T_{2 y}
$$

$$
T_{2 y}=T_{2} \times \tan 25^{\circ}
$$

$$
=26.75 \mathrm{~N}
$$

$$
\begin{aligned}
& \sum F_{y}=T_{1 y}+T_{2 y}-F_{g}=0 \\
& F_{g}=T_{1 y}+T_{2 y} \\
& =81.92+26.75 \mathrm{~N}
\end{aligned}
$$

$$
=109
$$

Strategy 2: Create a closed vector diagram

1. Since we know that $\mathrm{F}_{\text {net }}=0$ at any point in equilibrium, what would happen if we added if we add up all of the force vectors?

They add to Zero.
2. Use Sine Law, Cosine Law, or whatever means necessary to solve the triangle...
3. NEVER assume that it is a right angle unless you can prove it geometrically.

Ex.
A 64 N object is suspended using ropes as shown in the diagram. Calculate tensions T_{1} and T_{2} in the ropes.
$\sum F=F_{1}+T_{1}+F_{2}=0$

$$
\frac{T_{1}}{\sin 40}=\frac{F^{2}}{\sin 85}
$$

$$
F=64 N
$$

$$
T_{1}=5 \frac{\sin 40^{\circ}}{\sin 85}=41 \mathrm{~N}
$$

$\frac{T_{2}}{\sin 55}=\frac{F_{2}}{\sin 85}$

$$
T_{\eta}=F_{g} \frac{\sin 5 s}{\sin 85}=53 N
$$

Ex.
An object is suspended as shown. If the tension in one of the ropes is 50 N as shown, what is the weight of the

Component Method

$$
\begin{aligned}
F_{g} & =T_{2} \sin 37 \\
& =30.1 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\Sigma F_{y} & =T_{2 y}-F_{3}=0 \\
\therefore F_{y} & =T_{2 y}=T_{\sin } \\
& =30.1 \mathrm{~N}
\end{aligned}
$$

You can use Strategy 1 or Strategy 2, just be sure you know both ways. You're bound to hit a brick wall eventually and it's nice to be able to try it from a different angle, no pun intended...

