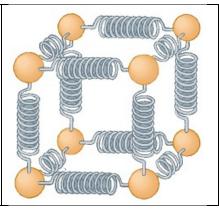
## **Thermodynamics**

## 7 – Thermal Expansion


Thermal expansion results from a <u>change</u> in the <u>average separation</u> between the constituent atoms in a solid, liquid or gas.

Imagine that the atoms are connected by stiff springs. (See to the right)

At ordinary temperatures the average spacing between the atoms is about  $10^{-10}$  m while oscillating about their equilibrium positions with an amplitude of approximately  $10^{-11}$  m at a frequency of approximately  $10^{13}$  Hz.

As the temperature of the solid <u>increases</u>, the atoms oscillate with greater amplitudes; as a result, the average separation between them increases.

Consequently, the object expands.



We can quantify both the <u>linear</u> and the <u>volume</u> expansion of materials using the following formula's:

| ( | Where: $\Delta L/\Delta V = Change in Length/Volume (n$                            | ٩ |
|---|------------------------------------------------------------------------------------|---|
| ١ | $\alpha/\beta$ = Liear Volume expansion coeff<br>$L_o/V_o$ = Initial Length/Volume | ì |
|   | Lo/Vo = Initial Length/Volume                                                      |   |
|   | ΔT = change in Temperature                                                         |   |

| Material                                           | Coefficient of Linear Expansion, $\alpha$ ( $\mathbb{C}^{\circ}$ ) <sup>-1</sup> | Coefficient of Volume Expansion, $\beta$ ( $\mathbb{C}^{\circ}$ ) <sup>-1</sup> |
|----------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Solids                                             |                                                                                  |                                                                                 |
| Aluminum                                           | $25 \times 10^{-6}$                                                              | $75 \times 10^{-6}$                                                             |
| Brass                                              | $19 \times 10^{-6}$                                                              | $56 \times 10^{-6}$                                                             |
| Copper                                             | $17 \times 10^{-6}$                                                              | $50 \times 10^{-6}$                                                             |
| Gold                                               | $14 \times 10^{-6}$                                                              | $42 \times 10^{-6}$                                                             |
| Iron or steel                                      | $12 \times 10^{-6}$                                                              | $35 \times 10^{-6}$                                                             |
| Lead                                               | $29 \times 10^{-6}$                                                              | $87 \times 10^{-6}$                                                             |
| Glass (Pyrex®)                                     | $3 \times 10^{-6}$                                                               | $9 \times 10^{-6}$                                                              |
| Glass (ordinary)                                   | $9 \times 10^{-6}$                                                               | $27 \times 10^{-6}$                                                             |
| Quartz                                             | $0.4 \times 10^{-6}$                                                             | $1 \times 10^{-6}$                                                              |
| Concrete and brick                                 | $\approx 12 \times 10^{-6}$                                                      | $\approx 36 \times 10^{-6}$                                                     |
| Marble                                             | $1.4 - 3.5 \times 10^{-6}$                                                       | $4-10 \times 10^{-6}$                                                           |
| Liquids                                            |                                                                                  |                                                                                 |
| Gasoline                                           |                                                                                  | $950 \times 10^{-6}$                                                            |
| Mercury                                            |                                                                                  | $180 \times 10^{-6}$                                                            |
| Ethyl alcohol                                      |                                                                                  | $1100 \times 10^{-6}$                                                           |
| Glycerin                                           |                                                                                  | $500 \times 10^{-6}$                                                            |
| Water                                              |                                                                                  | $210 \times 10^{-6}$                                                            |
| Gases                                              |                                                                                  |                                                                                 |
| Air (and most other gases at atmospheric pressure) |                                                                                  | $3400 \times 10^{-6}$                                                           |

Copyright © 2005 Pearson Prentice Hall, Inc.

## Example:

A steel railroad track has a length of 30.000 m when the temperature is 0.0 °C. What is its length when the temperature increases to 40.0 °C?



## Examples:

A glass (made of glass) filled water with EXACTLY 1.0 liter is completely filled at 5°C. How much water will spill out of the glass when the temperature is raised to 85°C?

15mL will spill out!