Thermodynamics
6 - Specific Heat
Specific Heat (C): refers to the amount of heat required to \qquad raise the temperature of 1 kg of a substance by 1 K (or $1^{\circ} \mathrm{C}$).

But what if you had more (or less!) than $1 \mathrm{~kg} .$.

$$
\begin{aligned}
\text { Where: } \mathrm{Q} & =\text { Required Heat }(J) \\
\mathrm{m} & =\text { mass }(\mathrm{kg}) \\
\mathrm{c} & =\text { specific heat of substance } \\
\Delta \mathrm{T} & =\text { change in temp }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Example:
Copper vs. Water

$$
\begin{aligned}
& \mathrm{c}_{\text {water }}=4186 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} \\
& \mathrm{c}_{\text {copper }}=389 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}
\end{aligned}
$$

Starting with 1 gram of copper at $0^{\circ} \mathrm{C}$ and 1 gram of water at 0
${ }^{\circ} \mathrm{C}$. If you then raised the temperature of each by $1^{\circ} \mathrm{C}$ which substance required a larger heat input? Why?

WATER!
Cwater $>$ Copper

Example:
Mr. Sandor, who currently weighs in at 85 kg 's, just caught the flu (oh no... ©). His body temperature increased from $37.0^{\circ} \mathrm{C}$ to $39.0^{\circ} \mathrm{C}$. How much energy was required to raise the body's temperature?

$$
\begin{aligned}
& Q=m c_{\text {body }} \Delta T \\
& Q=(85)(3470)(2)=590 \mathrm{~kJ}
\end{aligned}
$$

Hot Object added to a Cold Liquid

Example:
We wish to determine the specific heat of a new alloy. A 0.150 kg sample of the alloy is heated too $540{ }^{\circ} \mathrm{C}$. It is then quickly placed in 400 . g of water at 15.0°, which is contained in a 200 g aluminum calorimeter cup. (Assume that the insulating jacket insulates well, so the temperature does not change significantly). The final temperature of the mixture is $30.5^{\circ} \mathrm{C}$. Calculate the specific heat of the alloy.

$$
\begin{aligned}
& \quad-Q_{\text {Hot }}=Q_{\text {cold }} \\
& -m_{s} c_{s} \Delta T=m_{\omega} c_{\omega} \Delta T+m_{\text {cal }} c_{\text {call }} T T \\
& -(0.150) c_{s}(30.5-540)=(0.40) 4186(305-15)+(0.20)(900)(30.5-15) \\
& c_{s}=\frac{(0.40)(4186)(30.5-15)+(0.20)(900)(30.5-15)}{-(0.150)(30.5-540)} \\
& c_{s}=376 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot c}
\end{aligned}
$$

Heat Energy
Notice how at certain points \qquad energy is added to the system but temperature does not increase.... Energy is required to separate particles from each other and therefore does not increase their Kinetic
energy (temperature)

Where: $\mathrm{Q}=$ Latent Heat(J)
$\mathrm{m}=\operatorname{mar}(\mathrm{kg})$
$L_{f}=$ heat of fusion (melt/frecze)
$\mathrm{L}_{\mathrm{v}}=$ heat of vaporization (bsil/condense)

Example:
How much energy does a refrigerator have to remove from 1.5 kg of water at $20.0^{\circ} \mathrm{C}$ to make ice at $-12^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& Q_{\text {total }}=Q_{20 \rightarrow 0}+Q_{0}+Q_{0 \rightarrow-12} \\
& Q_{\text {total }}=m_{\omega} C_{\omega} \Delta T+m L_{f}+m_{\text {ie }} C_{\text {ice }} \Delta T \\
& Q_{\text {total }}=(1.5)(4186)(0-20)+(1.5)(-333,000)+(1.5)(2100)(-12-0)
\end{aligned}
$$

Conduction: Thermal Energy can be \qquad transferred from one material to another in a process known as heat.
The only requirement for heat transfers is a difference in temperature .

Ok... A couple MORE important details

- Q increases if the \qquad temperature difference (ΔT) is increased
- Q increases if the \qquad Area of the object increases
- Q increases if the \qquad Length of the object is decreased
- Some materials transfer heat better than others... $(\mathrm{k}=$ thermal conductivity $)$

Where:
$Q=$ Heat J
$\Delta t=$ time (s)
$k=$ thermal conductivity
$\mathrm{A}=$ cross-sectional area $\left(\mathrm{m}^{2}\right)$
$\Delta \mathrm{T}=$ change in temp (${ }^{\circ}$)

$\mathrm{L}=$ Length (m)

Example:
If air has such a low thermal conductivity (0.22), why do we need to wear clothes? If we omit the obvious answer... decency!
Clothes trap air against our body.
Energy is transferred from our bodies to the trapped air. If air is constant replaced we must constantly warm NEW air.

Example:
Suppose you sit down on a $8.0^{\circ} \mathrm{C}$ concrete bench. You are only wearing a thin layer of clothing that provides negligible insulation and therefore your core temperature $\left(37^{\circ} \mathrm{C}\right)$ is only protected by 1.2 cm thick layer of fat (on your bum!) that touches the bench. Let's estimate the area of contact between your self and the bench to be $0.10 \mathrm{~m}^{2}$. What is the heat loss due to conduction?

$$
\begin{aligned}
& \frac{Q}{\Delta t}=\frac{\mathrm{KADT}}{L}=\frac{(0.2)(0.10(37-8.0)}{0.012} \\
& \frac{Q}{\Delta t=48.35 / 5} \quad \text { Bum } \longrightarrow \text { Bench! }
\end{aligned}
$$

Thermal Conductivities

FYI... There are two other means to transfer thermal energy...
Convection: Transfer of thermal energy by motion
in fluids.

Putting it all together!

Example:

When the weather gets cold, the air we breathe in is heated when it comes in contact with warm lung tissue. The energy to heat the air comes from our body. The inhaled air warms to nearly the temperature of the interior of a human body $37^{\circ} \mathrm{C}$. When humans exhale, some heat is retained by the body, but most if lost. We will assume the exhaled air is about $30^{\circ} \mathrm{C}$.
263.15 K

A typical person takes 12 breaths each minute, with each breath taking in about 0.50 L of outside air. If the air outside is $-10^{\circ} \mathrm{C}$ and is heated to $30^{\circ} \mathrm{C} \ldots \longrightarrow 303.15 \mathrm{~K}$
a. What is the volume of exhaled air with each breath?

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$V_{2}=\frac{V_{1} T_{2}}{T_{1}}=(0.50 \mathrm{~L})\left(\frac{303.15 \mathrm{~K}}{263.15 \mathrm{~K}}\right)=0.58 \mathrm{~L}$
b. Find the heat and the heat power required to warm one breath of air ($\mathrm{MM}=29 \mathrm{~g} / \mathrm{mol}$ and specific heat $=1.01 \mathrm{~kJ} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$). (the gases are exchanged as you breath - Oxygen to Carbon Dioxide - but to a good approximation the number of atoms, stay the same).
Note: consider only the energy required to warm the air, not the energy lost to evaporation from the tissues of the lungs.

$$
\begin{aligned}
& P V=n R T \\
& n=\frac{R T}{P V}=\frac{\left(1.9 \times 10^{5} P a\right)\left(5.0 \times 10^{-4} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} 1 \mathrm{~B})(263.15 \mathrm{~K})}=0.023 \mathrm{~mol}
\end{aligned}
$$

12 breaths per min $\longrightarrow 1$ breath every 5 s

$$
\begin{gathered}
\frac{Q}{\Delta t}=\frac{M_{\text {air } C_{\text {ar }} \Delta T}^{\Delta t}=\frac{n_{\text {air }} M M_{\text {air } C_{\text {air }} \Delta T}^{\Delta t}=\frac{(0.023 \mathrm{~mol})(29 \mathrm{~g} / \mathrm{mol})(1.01)(30-(-10))}{5 \mathrm{~s}}}{\frac{Q}{\Delta t}=5.4 \mathrm{~J} / \mathrm{s}=5.4 \mathrm{~W}}}{}=\frac{1}{\Delta t}
\end{gathered}
$$

