

Ok... A couple of important details

- In order for a <u>ges</u> to do work its <u>volume</u> must change
- You will <u>ONLY</u> see simple shapes (Squares, Rectangles, Triangles) on a PV Diagram
- <u>Pressure</u> must be in Pascal's (Pa); <u>Volume</u> in m³
- $W_{gas} < 0$ if the gas <u>expands</u>; (think about it... Energy is being transferred <u>out</u> of the system)
- $W_{gas} > 0$ if the gas is <u>complexes</u>; (Energy is being transferred <u>into</u> of the system)

A very useful Table!

Process	Constant	PV Diagram	Ideal Gas Law	First Law of Thermodynamics
Isobaric	Pressure	Horizontal line	V α T	ΔU = Q + W
Isochoric	Volume	Vertical line	ΡαΤ	ΔU = Q
Isothermal	Temperature	Curved line	ΡV α Τ	ΔU = 0
Adiabatic	No heat exchanged	Curved line (jumps to different isotherm)	PV = nRT (only "nR" are constant)	ΔU = W

Example:

A substance undergoes a cyclic process shown in the graph. Heat transfer occurs during each process in the cycle.

(a) What is the work output during process $a \rightarrow b$?

Example:
A heat engine's cycle is shown in the PV diagram to the right.

$$P_1 = 345 \, kPa_1, P_2 = 245 \, kPa_1, P_2 = 125 \, kPa_2, and P_2 = 225 \, kPa_2, V_1 = 35.0 \, L and V_2 = 85.0 \, L.$$

What is the net work done during one cycle of the engine?
Note: 1 L = 0.001 m³
 $W = A_{rec} - A_{trig1} - A_{trig2}$
 $W = (P_1 - P_3)(V_2 - V_1) - \frac{1}{2}(P_1 - P_3)(V_2 - V_1) - \frac{1}{2}(R_1 - P_3)(V_2 - V_1)$
 $W = (223, 000 \, B^3)(0.0500) - \frac{1}{2}(100, 000)(0.0500) - \frac{1}{2}(100, 000)(0.0500)$
 $W = -60005$
 $T \text{ or } - ?$
Expands at a higher pressure : does MORE
Work on the surroundings than the
surroundings does on !!!