

4 Processes - Isochoric, Isobaric, Isothermal, and Adiabatic
Remember... Iso = SAME!
Isochoric Process

- Constant volume process.
- While volume is constant... pressure is $\boldsymbol{n o t}$!
- The gas is \qquad confined in a \qquad container $\left(\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{f}}\right)$

Example:
A certain Gas of volume $0.40 \mathrm{~m}^{3}$, pressure of 4.5 bar and temperature of $1300^{\circ} \mathrm{C}$ is heated to in a cylinder to 9.0 bar when the volume remains constant. Calculate the temperature (in Kelvin) at the end of the process. ($1 \mathrm{bar}=100,000 \mathrm{~Pa}$)

$$
\begin{aligned}
& P_{1} V_{1}=n_{1} R T_{1} \\
& V_{1} \\
& V_{1}
\end{aligned} \quad\left\{\begin{array} { l }
{ R T _ { 1 } } \\
{ P _ { 1 } }
\end{array} \left\{\begin{array}{l}
P_{2} V_{2}=n_{2} R T_{2} \\
\frac{V_{2}}{n_{2}}=\frac{R T_{2}}{P_{2}}
\end{array}\right.\right.
$$

since $v_{1}=v_{2}$ and $n_{1}=n_{2} \ldots$

$$
\begin{aligned}
& \frac{R T_{1}}{P_{1}}=\frac{R / T_{2}}{P_{2}} \\
& T_{2}=\frac{T_{1} P_{2}}{P_{1}}=\frac{(1573.15 \mathrm{~K})\left(900,000 P_{a}\right)}{450,000 P_{a}} \\
& T_{2}=3146 \mathrm{~K}=3100 \mathrm{~K}
\end{aligned}
$$

Example:
On a cold morning the pressure inside a car tire is 28.0 psi when the temperature is $2.0^{\circ} \mathrm{C}$. As the sun comes out the tire warms the black tire and the temperature reaches $28^{\circ} \mathrm{C}$. What is the tire pressure (in psi) at this temperature. ($1 \mathrm{~atm}=14.7 \mathrm{psi}$)

$$
\begin{aligned}
& P_{1} V_{1}=n, R T_{1} \\
& \frac{V_{1}}{n_{1}}=\frac{R T_{1}}{P_{1}} \\
& \frac{R T_{1}}{P_{1}}=\frac{R T_{2}}{P_{2}} \\
& \frac{P_{2} V_{2}=n_{2} R T_{2}}{n_{2}}=\frac{R T_{2}}{P_{2}} \\
& P_{2}=\frac{P_{1} T_{2}}{T_{1}}=\frac{(301.15 \mathrm{k})}{(275.15 \mathrm{k})}(28.0 P S I) \\
& \left.P_{2}=30.6 P S I\right)
\end{aligned}
$$

Isobaric Process

- Constant pressure process. $\left(\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}}\right)$
- Constant pressure \qquad can be achieved with a piston when heat is applied to the gas.

Example:

A movable piston is placed on a 3.0 L cylinder containing a gas at $60.0^{\circ} \mathrm{C}$. The gas is then cooled until the final temperature is $20^{\circ} \mathrm{C}$. What is the final volume that the gas occupies?
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$V_{2}=\frac{T_{2}}{T_{1}} \cdot V_{1}=\left(\frac{293.15 \mathrm{~K}}{333.15 \mathrm{~K}}\right)(3.0 \mathrm{~L})=2.6 \mathrm{~L}$

Isothermal Process

- Constant Temperature process. $\left(\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{f}}\right)$
- Can be achieved by using a heat reservoir \qquad .

Heat Reservoir : (or Heat Sink) is a
thermodynamic system with a heat capacity that is large enough that when it is in thermal contact with another system of interest or its environment, its temperature remains effectively constant. Remember the rock in the Atlantic Ocean?

Example:
Tum... Depth
A south pacific pearl diver takes a deep breath at the surface of the ocean. She fills her lungs with 4.5 L of air, and then dives to a depth of 6.0 m . At this death what is the volume of air occupied by the pearl diver's lungs? Wait... do we need to remember something from the previous unit? Classic Flawson... $P_{1}=1.01 \times 10^{5} \mathrm{~Pa}$
$P_{1}=1.01 \times 10 \mathrm{~Pa}$
$P_{2}=P_{0}+\rho_{w} g d=1.01 \times 10^{5} P_{a}+(1030)(9.8)(6.0)=1.62 \times 10^{5} P_{a}$
$P_{1} V_{1}=P_{2} V_{2}$
$V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{\left(1.01 \times 10^{5} P_{a}\right) \times(4.54}{\left(1.62 \times 10^{5} \mathrm{~Pa}\right)}=2.8 \mathrm{~L}$
Isothermal expansion occurs when the gas expands and does work on the \qquad
Isothermal contraction occurs when the gas contracts and the surroundings does work on the gas.

Adiabatic Process

- Constant \qquad process. $(\mathrm{Q}=0)$
- Change in P, V, and T !
- Therefore... from the $1^{\text {st }}$ Low simplifies

$$
\Delta U=W+\not \approx
$$

An adiabatic expansion lowers the temp of the gas. An adiabatic compression raises \qquad the temp of the gas. This process allows one to use \qquad instead of \qquad to change the temperature of a gas.

Thermodynamics

5 b - Thermodynamics of an Ideal-Gas Process

Remember that \qquad Heat and \qquad are just two different ways to add \qquad to a system.

When a gas expands (an expanding piston) the gas can do work on their surroundings.

When a constant Force pushes down on a piston object Work can be calculated...

$$
\begin{aligned}
& W=F \cdot d \quad P_{\text {ext }}=\frac{F}{A} \quad F=P_{\text {ext }} \cdot A \\
& W=\left(P_{\text {ext }} \cdot A\right) d=P_{\text {ext }} \cdot A \cdot \Delta y \\
& W=P \cdot \Delta U \longrightarrow \text { Whoa... }
\end{aligned}
$$

And equally important.... Work is the \qquad under PV graph between V_{i} and $\mathrm{V}_{\mathrm{f}}(\Delta \mathrm{V})$

