

Thermodynamics
4 - Ideal Gases
A mole \qquad is a \qquad unit that allows us to measure the amount of something.

1 mole of a substance $=6.02 \times 10^{23} \quad$ particles of that substance
Example:
A system contains 200.0 g of nitrogen gas. How many moles does it contain? How many molecules?

$$
\begin{aligned}
& 200.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{28.02 \mathrm{~g}}=\frac{1.138 \mathrm{~mol} \mathrm{~N}}{2} \\
& \left.200.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{28.02 \mathrm{~g}} \times \frac{6.02 \times 10^{23} \mathrm{molec}}{1 \mathrm{~mol}}=4.29\right) \times 10^{24} \mathrm{mdlec} \mathrm{~N}_{2}
\end{aligned}
$$

Ideal Gases
Unlike solids and liquids... gases are compressible
\qquad

Energy of the Particles: Temperture is a direct measure of the querage_Kinetic Energy of the
particles. particles.

In fact we can describe the relationship between temperature and kinetic energy with the following equation...

And...
$E_{F} \frac{3}{2} N k_{G} T \ldots E_{F} \frac{3}{2} n R T$

Example:
A science classroom contains 7.0×10^{27} molecules of air. Find the energy required to raise the temperature from $11^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. How long would it take if the radiator operates at 960 watts and is 90% efficient?

$$
\begin{aligned}
& \Delta E=\frac{3}{2} N K_{b} \Delta T=\frac{3}{2}\left(7.0 \times 10^{27} \text { molech }\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{k}\right)\left(25^{\circ} \mathrm{C}-11^{\circ} \mathrm{C}\right) \\
& \Delta E=2030 \mathrm{~kJ} \\
& t=\frac{\Delta E}{\Delta P \cdot 90 \%}=\frac{2030000 \mathrm{~J}}{(960 \mathrm{~J} / \mathrm{s} \cdot 0.90)}=2350 \mathrm{~s} \text { or } 39 \mathrm{mins}
\end{aligned}
$$

Why science teachers should not be given playground duty.

If pressure in a gas is due to collisions_ of a particle with the walls of a container... determine the following relationships.

Therefore...

Where: $\mathrm{N}=\#$ of particles

$$
\mathrm{k}_{\mathrm{b}}=\text { Boltzman's Constant }
$$

Where: $\quad \mathrm{C}=$ constant value

$$
\text { in fact } C=k_{b}!!!
$$

More traditionally written as....

Where: $\mathrm{n}=$ \# of moles

$$
\begin{gathered}
\mathrm{R}=\text { Universal Gar Constant } \\
(8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{k})
\end{gathered}
$$

Example:
A cylindrical container of radius 15 cm and height 0.30 m contains 0.60 mol of gas at 433 K . Find both the pressure (in kPa) in the container and force extered on the lid of the container.

$$
\begin{aligned}
& V=\pi r^{2} h=\pi(0.15)^{2}(0.30)=0.0212 \mathrm{~m}^{3} \\
& P=\frac{n R T}{V}=\frac{(0.60)(8.31)(433)}{0.0212 \mathrm{~m}^{3}}=1.02 \times 10^{5} \mathrm{~Pa} \\
& F=P \cdot A=P \cdot \pi r^{2}=\left(1.02 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right) \pi(0.15 \mathrm{~m})^{2} \\
& F=7.2 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

