Thermodynamics

1 - Transforming Energy

Energy: CANNOT (forget Einstein for now @) be <u>created</u> or <u>destroyed</u> but CAN be <u>converted</u> from one form to another.

$$\Delta \mathbf{E} = \Delta \mathbf{E}_{\mathbf{K}} + \Delta \mathbf{E}_{\mathbf{P}} + \Delta \mathbf{E}_{\mathbf{H}} \dots = \mathbf{W}$$

We often convert one from to another in order to utilize the energy.

- <u>Chemical</u> Energy of gasoline is converted to <u>Ther mal</u> Energy in a car, which in turn is converted to <u>Mechanical</u> Energy to move the car.
- <u>Potential</u> Energy of water in a dam is converted to <u>Mechanical</u> Energy as it falls, which is then converted to <u>Electrical</u> Energy by a turbine.

During these processes we often say Energy is lost... but this can't be true. *Energy can neither be created or destroyed*.

In fact energy is not lost, but instead converted to an <u>undersized</u> form. (Often <u>Thermal</u> Energy)

We use the term <u>efficency</u> to describe the effectiveness of an energy conversion.

Example:

A 75 W incandescent light bulb produces 2.8 W of visible light. **Calculate of the efficiency of the bulb**.

$$e = \frac{P_{out}}{P_{in}} \times 100\% = \frac{2.8W}{15W} \times 100\% = 3.7\%$$

A 15 W light CFB (Compact Fluorescent Bulb) produces the same visible light. **Calculate the efficiency of the bulb**.

$$C = \frac{P_{out}}{P_{in}} \times 100\% = \frac{2.8W}{15W} \times 100\% = 19\%$$

How many times more efficient is a CFB than an incandescent light bulb?

$$\frac{18.7\%}{3.7\%}$$
 ~ 5 x

Example:

Cranes are often used to increase an objects potential energy. Crane 1 used 25 kJ of energy to lift a 200 kg box to the top of a building. Crane 2 uses 10 kJ to lift a 120 kg box to the same roof. Which crane is more efficient?

Crane
$$1 - 7 e = \frac{mgh}{25,0005} \times 100\% = 7.84 h \%$$

$$Crane 2 - t e = \frac{m_2gh}{10,0005} \times 100\% = 11.8 h^{\circ}$$

Energy in the Body: Bio again.... 😕

In the cells of our body <u>glucosc</u> is converted into energy.

$$\begin{array}{c} \text{cellulation} \\ \text{respiration} \\ \hline \end{array} \rightarrow C_6 H_{12}O_6 + 6O_2 \\ \rightarrow 6CO_2 + 6H_2O + Energy \\ \hline \end{array}$$

The energy is then stored in a molecule called adenosine triphosphate (ATP). This energy is released to do the work of life!

 $\underline{19}$ of glucose releases ~ $\underline{17}$ KJ of Energy

Eating Calories			Burning Calories (70 kg person)	
Food	E content in Cal	E content in kJ	Activity	Rate at which we
Fried Egg	100	418		consume E (W)
Apple	125	523	Typing	125
Beer (can)	150	628	Walking @ 5 km/h	380
Latte	260	1088	Cycling @ 15 km/h	480
Slice of Pizza	300	1255	Swimming (Fast Front Crawl)	800
Apple Pie Slice	400	1674	Running @ 15 km/hr	1150
	·	1 Cal = 1	t.\84 kJ	

Example:

A 12 oz can of beer contains 150 cal of beer. If all that energy is stored in the simple carbohydrate Glucose how many g's of sugar are in the beer?

$$150 \text{ cal } \times \frac{4.184 \text{ kJ}}{1 \text{ cal }} \times \frac{19}{17 \text{ kJ}} = 379 \text{ sugar}$$

Example:

Example: A cyclist racing in the Gran Fondo pedals for 5.0 hrs at a speed of 15 km/hr. How much metabolic energy (in kJ's) is required? How much energy goes to forward propulsion is the process is only 25% efficient.

$$\Delta E = W = \Delta P + = (4805/s)(180,000s)$$

$$\Delta E = 324710^{3} + 5
8.64 \times 10^{6} + 5
E_{out} = 32000^{3} + 5 \times 0.25$$

$$E_{out} = 3110^{6} + 5 \times 0.25$$

Example:

How many flights of stairs could you climb on the energy contained in a 12 oz can of beer? Assume that your mass is 70 kg and that each flight of stairs has a vertical displacement of 3.0 m. Again assume 25% efficiency.

$$E_{in} = 628 \text{ kJ} \times 0.25 = 157 \text{ kJ}$$

$$E_{in} = mgh$$

$$h = \frac{E_{in}}{mg} = \frac{157,000J}{(10 \text{ kg})(9.8 \text{ m/s}^2)} = 229m$$

$$f \text{ lights} = \frac{229m}{3.0m} = 76.3 \text{ flights}$$

16 Thighis