Fluids Notes
1 - Hydrostatic Pressure
Fluid: a substance that flows_. Fluids can be both \qquad liquids and \qquad gases between particles) \qquad liquids (like
While gases can be \qquad compressed (due to empty \qquad space solids) cannot.

Gases can also expand when volume is increased.

Density: the \qquad amount of something in a given \qquad space .

Mass Density... mass of a substance in a given space

Material	$\boldsymbol{\rho}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Air $\left(20^{\circ} \mathrm{C}\right)$	1.2
Air $\left(0^{\circ} \mathrm{C}\right)$	1.28
Helium $\left(0^{\circ} \mathrm{C}\right)$	0.179
Liquid hydrogen	70
Mercury	13,546
Water (fresh)	1,000
Water (salt)	1,030
Gasoline	680
Ethyl Alcohol	790
Blood	1060
Glycerin	1260

Example:
What is the mass of air in a living room with dimensions 4.0 mx

$$
\begin{array}{r}
\rho=\frac{m}{V} ; m=\rho \cdot V=\left(\frac{1.2 \mathrm{~kg}}{\mathrm{~m}^{3}}\right)(4.0 \times 6.0 \times 2.5) \mathrm{m}^{3} \\
m=72 \mathrm{~kg}
\end{array}
$$

If the living room was converted into a swimming pool what would the mass be of the same swimming pool filled with BLOOD!? Mr. Lawson did you just go there!?

$$
\begin{aligned}
m=\rho V & =1060 \frac{\mathrm{ky}}{\mathrm{~m}^{3}}(4.0 \times 6.0 \times 2.5) \mathrm{m}^{3} \\
m & =63,600 \mathrm{~kg} \text { of BLOOD... }
\end{aligned}
$$

Some other interesting Densities...

Pressure: a ratio of the \qquad Force exerted vs. the \qquad Area it is exert on.

We will mostly use \qquad Pascals and \qquad atm ($1 \mathrm{~atm}=$ the weight of 1 atmosphere)

Did you know...? 99% of the mass of the atmosphere is below 30 km ? ~ I know right... either did I!

TABLE 10-2 Conversion Factors Between Different Units of Pressure

Hydrostatic Pressure: The pressure exerted by a fluid at equilibrium at a given point
within the fluid.
We can determine the pressure within a liquid by using a $F B D$. ($\left.F_{\text {net }}=0!\right)$

Where:
$\mathrm{p}=$ Absolute Pressure (Pa)
$p_{o}=$ Atmospheric Pressure (Pa)
$\rho=$ Fluid Density ($\mathrm{kg} / \mathrm{m}^{3}$)
$\mathrm{g}=$ gravity
$\mathrm{g}=$ Depth from sur face
d

Gauge Pressure is used when fluids exist in a closed System , like bike/car tires.
Gauge Pressure $=$ Absolute Pressure - Atmospheric Pressure $=$ \qquad
Pascal's Principle....
When force \qquad is applied to a confined fluid, the Change in pressure is transmitted equally
\qquad to all parts of the fluid. (Egg!!!)
\qquad This principle is used in hydraulic _(a liquid moving in a confined space under pressure) lifts....

Example:
A barber raises his customer's chair by applying a force of 150 N to a hydraulic piston of area $0.010 \mathrm{~m}^{2}$. If the chair is attached to a piston of area $0.10 \mathrm{~m}^{2}$, how massive a customer can the chair raise? Assume the chair itself has a mass of 5 kg.

$$
\begin{aligned}
& \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}, \frac{F_{1}}{A_{1}}=\frac{m g}{A_{2}} \\
& m=\frac{A_{2} F_{1}}{A_{1} g}=\frac{\left(0.10 \mathrm{~m}^{2}\right)(150 \mathrm{~N})}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(0.010 \mathrm{~m}^{2}\right)}=153 \mathrm{~kg} \\
& C \text { ut omer }=153 \mathrm{~kg}-5 \mathrm{~kg}=148 \mathrm{~kg}
\end{aligned}
$$

Which at point p ?
SAME

$$
\text { Equal depth }=\text { Equal Pressure }
$$

shape is irrelevant!

Devices to measure gas pressure

Blood Pressure - Bio Connect.... I know... Aw
On average, a human heart beats \qquad 75 times in \qquad 1 min (Ibert $/ 0.8 \mathrm{sec}$)
The heart circulates blood to all parts of the body, allowing \qquad nutrients and \qquad waste to diffuse substances
\qquad and \qquad at of cells.

Arteries carry nutrient rich blood to cells due to the contraction of heart muscles causing arteries to become pressurized.
Blood pressure is measured using both...
Systolic: the
 blood pressure

Example:
Postural hypotension is the occurrence of low (systolic) blood pressure when standing up too quickly from a reclined position, causing fatigue or lightheadedness. For most people, a systolic pressure of less than 90 mm Hg is considered low. If the blood pressure in your brain is 120 mm when you are lying down, what would it be (in mm Hg) when you stand up? Assume that your brain is 40 cm from your heart. Note: normally blood vessels contract and expand to keep your brain blood pressure stable when you change your posture.

$$
1 \mathrm{~mm} \mathrm{Hg}=133 \mathrm{~Pa}
$$

$$
\begin{aligned}
& \Delta p=\rho g \Delta h=(1060)(9.8)(0.40) \\
& \Delta p=4155.2 \mathrm{~Pa} \\
& \Delta p=4155.2 \mathrm{~Pa} \times \frac{1 \mathrm{mmHg}}{133 \mathrm{~Pa}}=31.2 \mathrm{mHg} \\
& p=120 \mathrm{mmHg}-31.2 \mathrm{mmHg}=89 \mathrm{mmHg}
\end{aligned}
$$

Fluids Notes

2 - Buoyant Force

The Story of Archimedes..

The story handed down through the generations is that Hiero, a king of the Greek city of Syracuse, gave a goldsmith a lump of gold and told him to make a royal crown. When the goldsmith brought the crown to the king, it weighed the same as the lump of gold Hero had given to him. King Hero began to ponder on the honesty of this craftsman. He was not certain, but he suspected that the goldsmith had kept some of the gold for himself and had mixed silver with the rest of it to make the crown heavy. That is when Hero called Archimedes and asked him to discover the truth, but without melting the crown down.

Archimedes knew this would be a difficult problem to solve and wondered how to go about it. The answer came suddenly! One day as Archimedes was lowering himself into one of the public baths in the city, he noticed that some water flowed over the sides of the tub. It is said that he became so excited that he ran out of the bath house through the streets of Syracuse, yelling, "Eureka! Eureka!" In Greek it meant, "I found it! I found it!"

Archimedes then needed to make an experiment to prove this idea of his. First, he weighed the crown. Then, he took a lump of gold and of silver, each weighing the same as the crown. The silver lump was larger because silver is lighter than gold. It takes much more silver to weigh as much as the lump of gold.

He put each lump in a vessel. The vessels were filled to the rim with water. The larger amount of silver caused more water to overflow than the lump of gold did, although both weighed the same. Archimedes knew then that any solid material will push away an amount of water equal to its own bulkiness, or volume. If the crown were pure gold, it would have to push away, or displace the same amount of water as the lump of pure gold that weighed the same.

But the crown made more water overflow than the lump of gold had. Was the goldsmith honest or dishonest? He was dishonest. He had added silver to the crown to make it bulkier. The king found him guilty of stealing.

Archimedes continued experimenting and found that what he learned could be used as a rule. This rule could be used for things that could float as well as for things that sink. Any object that floats will displace its own weight of water. Any object that sinks will displace an amount of water equal to its own volume. Volume is the amount of space an object takes up.

What is weight? Weight tells how heavy something is. What is volume? Volume tells us how much space it takes up. Do a pound of butter and pound of marshmallows both weigh the same? Yes! But, if you make a pile from a pound of marshmallows, you discover that it takes up much more space, or volume.

Which apple falls faster...? Draw and FBD for each!

Apple Dropped in Air

Apple Dropped in Water

You've probably noticed this principle while oceans!

(or yourself) in pools, lakes or oceans.

In fact the world record for bench-pressing 110 lbs is currently 36 reps! (Highly Beatable!)

That upward force is known as buoyant force_ (F_{b-}) and due to the pressure difference at the top and bottom_ of an object in a fluid.

We can derive F_{b} from the pressure differential at the Top and Bottom of an object in water.

$$
\begin{aligned}
& F_{b}=m_{f} g=\rho_{f} V g \\
& F_{b}=F_{\text {bottom }}-F_{\text {top }}=P_{\text {bottom }} A-P_{\text {top }} A \\
& F_{b}=\left(P_{o}+\rho_{f} g d_{\text {bottom }}\right) A-\left(P_{o}+\rho_{f} g d_{\text {top }}\right) A \\
& F_{b}=\rho_{f} g\left(d_{\text {bottom }}-d_{\text {top }}\right) A=\rho_{f} g h_{\text {object }} A \\
& F_{b}=\rho_{f} g V
\end{aligned}
$$

$$
F_{b}=m_{f} g=\rho_{f} g V
$$

Where:
$\mathrm{F}_{\mathrm{b}}=$ Force buoyant (N)
$\rho_{\mathrm{f}}=$ Density of the fluid!!
$\mathrm{V}=$ Volume of the displaced fluid
g = gravity

Example:
A crown weighing 8.30 N is suspended underwater from a string. The tension in the string is measured to be 7.81 N . Is the crown pure gold? (Density of gold $=$

$$
\begin{aligned}
& F_{\text {ret }}=0= \\
& F_{g}=F_{b}+T \\
& F_{b}=F_{g}-T=(8.30-781)=0.49 \mathrm{~N}
\end{aligned}
$$

Remember Vobject $=V_{\text {fluid displaced! }!~}^{\text {I }}$.

$$
\begin{aligned}
& F_{b}=p_{w} g V_{0} \\
& V_{0}=\frac{F_{b}}{p_{0 g}}=\frac{0.49}{(1000)(9.8)}=5.0 \times 10^{-5} \mathrm{~m}^{3} \\
& p_{c \text { crown }}=\mathrm{m} / \mathrm{and} \text { and } m=\frac{F_{y}}{9} \\
& p_{\text {crown }}=\frac{F_{y}}{g . V}=\frac{(8.30)}{\left(5.0 \times 10^{-5}\right)(9.8)} \\
&=\frac{17000 \mathrm{ky} / \mathrm{m}^{3}}{00} \\
& N_{0} \ldots
\end{aligned}
$$

Example:
An iceberg floating in seawater is extremely dangerous because much of the ice is below the surface. The hidden ice can damage a ship (remember the Titanic?) that is still a considerable distance from the visible ice. What fraction of the iceberg lies below the water level? ($\rho_{\text {ice }}=917$ $\mathrm{kg} / \mathrm{m}^{3}$)

$$
F_{\text {ret }}=0
$$

$\therefore F_{b}=F g$

$$
\rho_{c} g v_{f}=\rho_{0} v_{0} g
$$

$$
p_{f} V_{f}=p_{0} V_{0}
$$

$$
\frac{V_{f}}{V_{0}}=\frac{p_{0}}{p_{f}}=0.89
$$

$\therefore 89 \%$ of the object is below water 00

Floating objects that are not fully immersed are at \qquad Static equilibrium

$$
\begin{aligned}
& F_{b}=F_{g} \\
& \rho_{f} V_{f} \not g=\rho_{o} V_{o} \not b \\
& V_{f}=V_{o} \frac{\rho_{o}}{\rho_{f}}
\end{aligned}
$$

Swim Bladders
Fish have builtin mechanisms that allow them to move up and down and side to side in their environment.
Most fish rise and sink in the water the same way a hot air balloon rises and sinks in the air.

Most fish have an expandable sac ; much like a human lung that allows it to \qquad increase or
the volume of water it displaces without changing it's \qquad appreciably.
This allows it to \qquad sink or float.

Float or Sink?
Determine if an object floats or sinks we must compare.... \qquad Force Gravity with \qquad Force Buagnt.

$$
\begin{aligned}
& F_{g} v s . F_{b} \\
& m_{o b j e c t} g v s \rho_{f} V_{f} g \\
& \rho_{o} V_{o} g \text { vs } \rho_{f} V_{f} g \\
& \rho_{o} v s \rho_{f}
\end{aligned}
$$

If the object is \qquad dense than water it will \qquad sink decrease or \qquad .

Example:

Example:
A ferryboat is 4.0 m wide and 6.0 m long. When a truck pulls onto it, the boat sinks 4.00 cm in the water. What is the weight of the truck?

$$
\begin{aligned}
& F_{\text {ret }}=0 \\
& F_{g}=F_{b}=p_{f} V_{f g} \\
& F_{g}=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(4.0 \times 6.0 \times 0.0+00 \mathrm{~km}^{3}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\right. \\
& F_{g}=9.4 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

An empty rubber balloon has a mass of 0.0120 kg . The balloon is filled with helium at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ pressure. The filled balloon has a radius of 0.500 m and is perfectly spherical. What is the magnitude of the buoyant force acting on the balloon?

$$
\begin{aligned}
F_{b}=\rho_{f} V_{f g} & =(1.2)\left(\frac{4}{3} \pi(0.500)^{3}\right)(9.8) \\
F_{b} & =6.16 \mathrm{Nup}
\end{aligned}
$$

What is the magnitude of the net force acting on the balloon?

$$
\begin{array}{ll}
& F_{\text {net }}=F_{b}-F_{\text {gallon }}-F_{\text {prelim }} \\
F_{\text {net }}=6.16 \mathrm{~N}-(0.0120)(9.8)-(0.199)\left(\frac{4}{3} \pi(0.50) 198\right) \\
F_{\text {get }}=5.12 \mathrm{~N}
\end{array}
$$

Fluids Notes
3 - Hydrodynamics

So far we have only dealt with fluids at \qquad rest (Hydrostatics). Now we will address fluids in \qquad (Hydrodynamics)

Before we do so we must made 3 assumptions

- Fluids are incompressible

- Laminar flow; Fluids flow is Steady \qquad and therefore it's flow rate is \qquad INSTANT .
- Fluid flow is non-viscous (the higher the viscosity_ the more resistant to flow Ex: honey, tar, lava__) Flow Rate (f): flow rate of fluid that passes a particular point in a given time Where: $\quad V=$ volume (L or m^{3})

$$
f=\frac{V}{t}=\frac{A \cdot d}{t}=A v
$$

$$
\begin{aligned}
& \mathrm{V}=\text { volume }\left(\mathrm{L} \text { or } \mathrm{m}^{3}\right) \\
& \mathrm{A}=\text { cross-sectional area of the pipe }\left(\mathrm{m}^{2}\right) \\
& \mathrm{v}=\text { velocity of the fluid }(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

Equation of Continuity: flow rate is constant at \qquad ALL points in a closed tube

Since \bigvee_{1} of a fluid entering one part of a tube or pipe much be matched by an equal V_{2} of the same fluid at another part of a tube or pipe.

Flovids flow faster at the narrower parts of the tube/pipe and

$$
\rho_{2} A_{2} v_{2}=\rho_{2} A_{1} v_{1}
$$

_ Narrow_ at the wider parts of the tube.
This is really just a statement of the Law of Conservation of MASS_...

Same, incompressable, fluid so roe crops out!

$$
A_{1} v_{1}=A_{2} v_{2}
$$

Example:

$\rightarrow r=0.008 \mathrm{~m}$
A garden hose has an inside diameter of 16 mm . The hose can fill a 10. L bucket in 20. s. What is the speed of water out of the end of the hose?

$$
\begin{aligned}
& A_{1} V_{1}=A_{2} V_{2}=\frac{V_{2}}{t} \xrightarrow{\text { Volumed }} \\
& V_{1}=\frac{V_{2}}{+A_{1}}=\frac{0.010 \mathrm{~m}^{3}}{(205)\left(\pi(0.008 \mathrm{~m})^{2}\right)}=2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

What diameter nozzle would cause the water to exit with a speed 4 times greater than the speed inside the hose?

Continuity describes a moving fluid but \qquad the fluids moves...

Which areas) have the highest pressure?

Region 2 Region 3
Energy due to \qquad gets converted into energy due to
 (Kinetic energy)
The higher the \qquad the lower the \qquad pressure ... this is stated in _Bernoulli's Equation...

Example:
A small ranger vehicle has a soft, ragtop roof. When the car is at rest the roof is flat. When the car is cruising at highway speeds with its windows rolled up, does the roof

(a.) bow upward
c. bow downward?

Bernoulli's Equation... A Statement of the Law of Conservation of Energy_

Law of Conservation of Energy: Energy can neither be Created nor destroyed in a pipe/tube.

Derivation...
$W_{1}+E_{k 1}+E_{p 1}=W_{2}+E_{k 2}+E_{p 2}$
$F d_{1}+\frac{1}{2} m v_{1}^{2}+m g h_{1}=F d_{2}+\frac{1}{2} m v_{2}^{2}+m g h_{2}($ divide all by $V!)$
$\frac{F d_{1}}{V}+\frac{\frac{1}{2} m v_{1}{ }^{2}}{V}+\frac{m g h_{1}}{V}=\frac{F d_{2}}{V}+\frac{\frac{1}{2} m v_{2}{ }^{2}}{V}+\frac{m g h_{2}}{V}$
$p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$

$$
p_{1}+\frac{1}{2} p v_{1}^{2}+p g h_{1}=p_{2}+\frac{1}{2} p v_{2}^{2}+\rho g h_{2}
$$

$$
\begin{aligned}
& \mathrm{P}=\text { pressure (Pa) } \\
& \rho=\text { Density of the fluid } \\
& \mathrm{v}=\text { velocity } \\
& \mathrm{g}=\text { gravity } \\
& \mathrm{h}=\text { height above the ground }
\end{aligned}
$$

Example:
A very large storage tank, open to the atmosphere at the top and filled with water develops a very small hole in its side at a
point 9.2 m below the water level. If this hole is 2.0 m above the ground, how far (measured horizontally) from the base of the tank does the water strike the ground?

$$
A_{1} v_{1}=A_{2} v_{2}
$$

$$
v_{2}=\frac{A_{1} v_{1}}{A_{2}}=\frac{\pi(0.025)^{2}(0.60)}{\pi(0.013)}=2.2 \mathrm{n} / \mathrm{s}
$$

$p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g K_{1}^{0}=p_{2}+\frac{1}{2} p v_{2}^{2}+\rho g h_{2}$

$$
p_{2}=p_{1}+\frac{1}{2} p v_{1}^{2}-\frac{1}{2} p v_{2}^{2}-\rho g h_{2}
$$

$$
P_{2}=385035+0.5(1000)(0.60)^{2}-0.5(1000)(2.2)^{2}
$$

$-(1000)(9.8)(20)$

$$
\begin{aligned}
& P_{2}=186795 \mathrm{~Pa} \\
& P_{2}=1.9 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} p v_{1}^{2}+p g h_{1}=p g h_{2} \\
& \frac{1}{2} v_{1}^{2}=g h_{2}-g h_{1} \\
& v=\sqrt{2 g\left(h_{2}-h_{1}\right)} \sim \text { Torricellis Theorem } \\
& v=\sqrt{2(9.8)(9.2)}=13.4 \mathrm{~m} / \mathrm{s} \rightarrow v_{x} \\
& d_{y}=v_{y} \sigma^{0}+\frac{1}{2} a t^{2} \\
& t=\sqrt{\frac{2 d_{x}}{a}}=\sqrt{\frac{2(-2.0)}{-9.8}}=0.639 \mathrm{~s} \\
& d_{x}=v_{x} \cdot t=(13.4 \mathrm{~m} / \mathrm{s}) \cdot(0.639)=8.56 \mathrm{~m}
\end{aligned}
$$

Application: Airplanes generate lift!
Bernoulli discovered that a faster moving fluid has exerts \qquad less presurare than a slower moving fluid.
The air (fluid_) moving of the top_ of the wing encounters an obstacle that it must go around and therefore its speed increases and its pressure \qquad drops .

The difference in pressure between the bottom and top of the wing results in more
pressure at the bottom, thus pushing the wing \qquad upwards into the sky.

This is \qquad lift 'II .

Example:
What is the lift (in Newtons) due to Bernoulli's Principle on a wing of area $80.0 \mathrm{~m}^{2}$ if the air passes over the top and bottom surfaces at speeds of $340 . \mathrm{m} / \mathrm{s}$ and $290 . \mathrm{m} / \mathrm{s}$, respectively?
Find Δp !

$$
\begin{aligned}
& d+\infty \\
& +\frac{1}{2} \rho V_{2}^{2}+\rho g h_{2}^{l}
\end{aligned}
$$

difference in h~om

$$
\begin{aligned}
& p_{1}+\frac{1}{2} p v_{1}^{2}+p g h_{1}=p_{2}+\frac{1}{2} p v_{2}^{2} \\
& \frac{1}{2} p\left(v_{1}^{2}-v_{2}^{2}\right)=p_{2}-p_{1}=\Delta p
\end{aligned}
$$

$$
\Delta p=0.5(1.2)\left(340^{2}-290^{2}\right)=189,000 \mathrm{~Pa}
$$

$$
F=\Delta p \cdot A=(189,000)(80.0)=1.51 \times 10^{6} \mathrm{~N} \text { of lift![up] }
$$

