Multiplication and division are inverse operations. To divide a polynomial by a constant, we reverse the process of multiplication.

The expression $6x \div 3$ is a division statement. It represents the quotient of the monomial, 6x, and the constant 3. To model $6x \div 3$, we arrange six *x*-tiles in 3 rows. Each row contains two *x*-tiles. So, $6x \div 3 = 2x$ We can also model $6x \div 3$ as 2x

one dimension of a rectangle with an area of 6x and the other dimension 3. Then, $6x \div 3 = \frac{6x}{3}$ = 2x

We can use what we know about division as a fraction and integer division to determine the quotient.

$$\frac{6x}{3} = \frac{6}{3} \times x$$
$$= 2 \times x$$
$$= 2x$$

(-6x) ÷ 3 is the quotient of the monomial, -6x, and the constant 3.
 Using a model: Using fractions and integers:

We arrange six -x-tiles in 3 rows. -x -xEach row contains two -x-tiles. So, $(-6x) \div 3 = \frac{-6x}{3}$ Simplify the fraction. $(-6x) \div 3 = \frac{-6}{3} \times x$ $= -2 \times x$ = -2x

► $6x \div (-3)$ is the quotient of the monomial, 6x, and the constant -3. Using fractions and integers:

 $6x \div (-3) = \frac{6x}{-3}$ Simplify the fraction. $6x \div (-3) = \frac{6}{-3} \times x$ $= -2 \times x$ = -2x

- **1.** How could you use multiplication to verify the quotient in a division question?
- **2.** Why can we not use algebra tiles to divide when the divisor is negative?

Practice

Check

3. Write the multiplication sentence modelled by each set of algebra tiles.

- **4.** For each set of algebra tiles in question 3, write a division sentence.
- 5. a) Which of these products is modelled by the algebra tiles below?

i)
$$2(-2n^2 + 3n + 4)$$

ii) $2(2n^2 - 3n + 4)$

iii) $-2(2n^2 - 3n + 4)$

b) In part a, two of the products were not modelled by the algebra tiles. Model each product. Sketch the tiles you used. **6.** Which of these quotients is modelled by the algebra tiles below?

Apply

7. a) Multiply.

i)	3(5 <i>r</i>)	ii)	-3(5r)
iii)	(5r)(3)	iv)	-5(3r)
v)	-5(-3r)	vi)	(-3r)(5)

- **b)** In part a, explain why some answers are the same.
- c) For which products in part a could you have used algebra tiles? For each product, sketch the tiles you could use.
- **8.** a) Divide.

i)	$\frac{12k}{4}$	ii) $(-12k) \div 4$
iii)	$\frac{12k}{-4}$	iv) $(-12k) \div (-4)$

- b) In part a, explain why some answers are the same.
- c) For which quotients in part a could you have used algebra tiles? For each quotient, sketch the tiles you could use.

9. Write the multiplication sentence modelled by each rectangle.

- **10.** For each rectangle in question 9, write a division sentence.
- **11.** Use algebra tiles to determine each product. Sketch the tiles you used. Record the product symbolically.

a)
$$7(3s + 1)$$

b) $-2(-7h + 4)$
c) $2(-3p^2 - 2p + 1)$
d) $-6(2v^2 - v + 5)$
e) $(-w^2 + 3w - 5)(3)$
f) $(x^2 + x)(-5)$

12. Here is a student's solution for this question:

$$-2(4v^{2} - v + 7) = -2(4v^{2}) - 2(v) - 2(7)$$
$$= -8v^{2} - 2v - 16$$

Identify the errors in the solution, then write the correct solution.

13. Use algebra tiles to determine each quotient. Sketch the tiles you used. Record the product symbolically.

a)
$$\frac{12p - 18}{6}$$

b) $\frac{-6q^2 - 10}{2}$
c) $\frac{5h^2 - 20h}{5}$
d) $\frac{4r^2 - 16r + 6}{2}$
e) $\frac{-8a^2 + 4a - 12}{4}$
f) $\frac{6x^2 + 3x + 9}{3}$

14. Here is a student's solution for this question: Divide: $(-14m^2 - 28m + 7) \div (-7)$

Identify the errors in the solution, then write the correct solution.

- **15.** Use any strategy to determine each product.
 - a) $-3(-4u^2 + 16u + 8)$ b) $12(2m^2 - 3m)$ c) $(5t^2 + 2t)(-4)$ d) $(-6s^2 - 5s - 7)(-5)$ e) $4(-7y^2 + 3y - 9)$ f) $10(8n^2 - n - 6)$
- **16.** Use any strategy to determine each quotient. $24d^2 12$

a)
$$\frac{24u^2 - 12}{12}$$

b) $\frac{8x + 4}{4}$
c) $\frac{-10 + 4m^2}{-2}$
d) $(25 - 5n) \div (-5)$
e) $(-14k^2 + 28k - 49) \div 7$
f) $\frac{30 - 36d^2 + 18d}{-6}$
g) $\frac{-26c^2 + 39c - 13}{-13}$

17. Which pairs of expressions are equivalent? Explain how you know.

a)
$$5j^2 + 4$$
 and $5(j + 4)$
b) $10x^2$ and $3x(x + 7)$
c) $15x - 10$ and $5(-2 + 3x)$
d) $-3(-4x - 1)$ and $12x^2 - 3x$
e) $-5(3x^2 - 7x + 2)$ and $-15x^2 + 12x - 10$
f) $2x(-3x - 7)$ and $-6x^2 - 14x$