Calculating change in velocity and time

The equation $\vec{a}=\frac{\triangle \vec{v}}{\Delta t}$ can be used to calculate both the change in velocity and the time interval. Mathematically, $\overrightarrow{\boldsymbol{a}}=\frac{\triangle \vec{v}}{\Delta t}$ can be rewritten as:

Or $\begin{aligned} \Delta \vec{v} & =\vec{a} \triangle t \\ \Delta t & =\frac{\triangle \vec{v}}{\overrightarrow{\boldsymbol{a}}}\end{aligned}$
Suppose the bullet train in Japan accelerates from rest at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ forward for 37 s . What is the velocity of the bullet train at the end of 37 s ? Remember that the forward motion is positive (+).

$$
\begin{aligned}
\triangle \stackrel{\rightharpoonup}{v} & =\vec{a} \triangle t \\
& =\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)(37 \mathrm{~s}) \\
& =74 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The train's change in velocity is $74 \mathrm{~m} / \mathrm{s}$ forward. Since the train started from rest, $\vec{v}_{i}=0$, therefore

$$
\begin{aligned}
\Delta \vec{v} & =\vec{v}_{\mathrm{f}}-\vec{v}_{\mathrm{i}} \\
74 \mathrm{~m} / \mathrm{s} & =\vec{v}_{\mathrm{f}}-0 \\
\vec{v}_{\mathrm{f}} & =74 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The velocity of the train after 37 s is $74 \mathrm{~m} / \mathrm{s}$ forward.
Suppose a car is travelling north at $22 \mathrm{~m} / \mathrm{s}$. How long would it take to slow this car to $12 \mathrm{~m} / \mathrm{s}$ north if it accelerates at $2.5 \mathrm{~m} / \mathrm{s}^{2}$ south? Remember that the north direction is positive $(+)$. First, find the value of $\triangle \overrightarrow{\boldsymbol{v}}$:

$$
\Delta \vec{v}=\vec{v}_{\mathrm{f}}-\vec{v}_{\mathrm{i}}=(12 \mathrm{~m} / \mathrm{s})-(22 \mathrm{~m} / \mathrm{s})=-10 \mathrm{~m} / \mathrm{s}
$$

Then find the value of Δt :

$$
\begin{array}{rlr}
\Delta t & =\frac{\Delta \vec{v}}{\vec{a}} & \\
& =\frac{-10 \mathrm{~m} / \mathrm{s}}{-2.5 \mathrm{~m} / \mathrm{s}^{2}} & \begin{array}{l}
\text { Note: acceleration is }(-) \\
\text { since it is south. }
\end{array}
\end{array}
$$

It would take 4.0 s to slow the car.

Practice Problems

Try the following acceleration problems yourself.

1. A car starting from rest accelerates uniformly to $15 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ in 5.0 s . What is the car's acceleration?
2. A skier moving $6.0 \mathrm{~m} / \mathrm{s}$ forward begins to slow down, accelerating at $-2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 1.5 s . What is the skier's velocity at the end of the 1.5 s ?
3. A motorcycle is travelling north at $11 \mathrm{~m} / \mathrm{s}$. How much time would it take for the motorcycle to increase its velocity to $26 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ if it accelerated at $3.0 \mathrm{~m} / \mathrm{s}^{2}$?

Answers

1. $3.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$
2. $3.0 \mathrm{~m} / \mathrm{s}$ forward
3. 5.0 s
