\qquad
\qquad
\qquad

Trigonometry Review Package

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. What is the cosine of 55° ?
a. $\quad 0.574$
b. 0.819
c. 1.428
d. 0.853
\qquad 2. What is the tangent of 40° ?
a. 0.766
b. 0.839
c. 0.643
d. 0.677
3. What is $\sin ^{-1}(0.21)$?
a. 12.12°
b. 11.86°
c. 43.32°
d. 77.88°

Short Answer

1. Solve for the unknown side length.

2. Solve for the unknown side length.

3. A road worker measures the incline of a ramp that rises 11.5 m to be 25.1°. What is the length of the ramp?
4. A right triangle has a hypotenuse of 29 m . If one of the angles is 41°, what is the length of the adjacent side?
5. If one of the angles of a right triangle is 80° and the adjacent side is 30.6 m , what is the length of the opposite side?
6. In order to use the Pythagorean theorem, what must be true about a given triangle?
7. What is an angle of depression?
or draw a picture:
8. The sine ratio relates to which two sides of a right triangle?
\qquad and \qquad
9. The cosine ratio relates to which two sides of a right triangle?
\qquad and \qquad
10. The tangent ratio relates to which two sides of a right triangle?
\qquad and \qquad

Problem

1. Find x to one decimal place.

2. A new ramp is being built with an angle of elevation of 10°. If the height of the ramp is 2.5 m , what is the length of the base of the ramp?
3. Find x in the diagram below.

4. A landscape designer is building a fence around a garden. The side that has the house on it does not require fencing. How many metres of fence will she need?

5. Stella is calculating the height of a Douglas fir tree that she can see from her campsite. From her tent, she measures the angle of elevation to the top of the tree to be 23°. Her tent is 148.4 m from the base of the tree. She then walks 55 m closer to the tree and measures the angle of elevation to be 34°.

a) How far is Stella from the tree?
b) What is the height of the tree?

Trigonometry Review Package Answer Section

MULTIPLE CHOICE

1. ANS: A PTS: 1

OBJ: Geometry LOC: G-SO4
DIF: Easy
REF: 7.3
KEY: Cosine ratio
2. ANS: B

PTS: 1
OBJ: Geometry LOC: G-SO4
KEY: Tangent ratio
3. ANS: A PTS: 1

OBJ: Algebra LOC: A-SO1
KEY: Inverse trigonometric function

TOP: The Cosine Ratio
DIF: Easy
REF: 7.4
TOP: The Tangent Ratio
DIF: Easy
REF: 7.5
TOP: Finding Angles and Solving Right Triangles

SHORT ANSWER

1. ANS:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =7.2^{2}+5.2^{2} \\
c^{2} & =51.84+27.04 \\
c^{2} & =78.88 \\
c & =\sqrt{78.88} \\
c & =8.9 \mathrm{~cm}
\end{aligned}
$$

The hypotenuse is 8.9 cm long.
PTS: 1 DIF: Easy
LOC: A-SO1 | G-SO2
KEY: Pythagorean Theorem

REF: 7.1 OBJ: Algebra | Geometry
TOP: The Pythagorean Theorem
2. ANS

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
a^{2}+8.5^{2} & =9.5^{2} \\
a^{2} & =9.5^{2}-8.5^{2} \\
a^{2} & =90.25-72.25 \\
a^{2} & =18 \\
a & =\sqrt{18} \\
a & =4.3 \mathrm{~cm}
\end{aligned}
$$

The side is 4.3 cm long.
PTS: 1 DIF: Easy
LOC: A-SO1| G-SO2
KEY: Pythagorean Theorem
3. ANS:

$$
\begin{aligned}
\sin A & =\frac{\text { opp }}{\text { hyp }} \\
\sin 25.1^{\circ} & =\frac{11.5}{\text { hyp }} \\
\text { hyp } & =\frac{11.5}{\sin 25.1^{\circ}} \\
\text { hyp } & =27.1 \mathrm{~m}
\end{aligned}
$$

The ramp is 27.1 m long.

PTS: 1 DIF: Moderate
LOC: A-SO1 | G-SO4
KEY: Sine ratio

REF: 7.1
OBJ: Algebra | Geometry
TOP: The Pythagorean Theorem

REF: 7.2
TOP: The Sine Ratio
4. ANS:

$$
\begin{array}{r}
\cos \mathrm{A}=\frac{\text { adj }}{\text { hyp }} \\
\cos 41^{\circ}=\frac{\text { adj }}{29} \\
29 \cos 41^{\circ}=\text { adj } \\
21.89 \mathrm{~m}=\text { adj }
\end{array}
$$

The adjacent side is 21.89 m long.

| PTS: $1 \quad$ DIF: Easy | REF: 7.3 | OBJ: Algebra \| Geometry | |
| :--- | :--- | :--- | :--- | :--- |
| LOC: A-SO1 \mid G-SO4 | | TOP: The Cosine Ratio | |
| KEY: Cosine ratio | | | |

5. ANS:

$$
\begin{aligned}
\tan \mathrm{A} & =\frac{\text { opp }}{\text { adj }} \\
\tan 80^{\circ} & =\frac{\text { opp }}{30.6}
\end{aligned}
$$

$30.6 \tan 80^{\circ}=\mathrm{opp}$

$$
173.5 \mathrm{~m}=\mathrm{opp}
$$

The length of the opposite side is 173.5 m .
PTS: 1 DIF: Easy REF: 7.4 OBJ: Algebra | Geometry
LOC: A-SO1|G-SO4 TOP: The Tangent Ratio
KEY: Tangent ratio
6. ANS:

It must be a right triangle which means one angle is 90 degrees.
PTS: 1
7. ANS:

The angle between the horizon and the line of sight when looking down.
PTS: 1
8. ANS:

The opposite and the hypotenuse.
PTS: 1
9. ANS:

The adjacent and hypotenuse.
PTS: 1
10. ANS:

The opposite and adjacent sides.
PTS: 1

PROBLEM

1. ANS:

$$
\begin{aligned}
\sin \mathrm{A} & =\frac{\mathrm{opp}}{\mathrm{hyp}} \\
\sin 45.0^{\circ} & =\frac{x}{109.5}
\end{aligned}
$$

$109.5 \sin 45.0^{\circ}=x$

$$
77.4 \mathrm{~m}=x
$$

The measure of x is 77.4 m .
PTS: 1 DIF: Easy
LOC: A-SO1 | G-SO4
KEY: Sine ratio
2. ANS:

$$
\begin{aligned}
\tan A & =\frac{\text { opp }}{\operatorname{adj}} \\
\tan 10^{\circ} & =\frac{2.5}{\operatorname{adj}} \\
\operatorname{adj} & =\frac{2.5}{\tan 10^{\circ}} \\
\operatorname{adj} & =14.2 \mathrm{~m}
\end{aligned}
$$

The ramp's base is 14.2 m long.

| PTS: 1 | DIF: Easy | REF: 7.4 | OBJ: Algebra \mid Geometry |
| :--- | :--- | :--- | :--- | :--- |
| LOC: A-SO1 \|G-SO4 | | TOP: The Tangent Ratio | |
| KEY: Tangent ratio | | | |

3. ANS:

$$
\begin{aligned}
\tan A & =\frac{\text { opp }}{\operatorname{adj}} \\
\tan x & =\frac{78.3}{26.1} \\
x & =\tan ^{-1}\left(\frac{78.3}{26.1}\right) \\
x & =71.6^{\circ}
\end{aligned}
$$

The measure of x is 71.6°.
PTS: 1 DIF: Easy
LOC: A-SO1 | G-SO4
KEY: Inverse trigonometric function

REF: 7.5 OBJ: Algebra | Geometry
TOP: Finding Angles and Solving Right Triangles
4. ANS:

The patio can be divided into two right triangles and a rectangle.

Solve for a.

$$
\begin{aligned}
\cos \theta & =\frac{\text { adj }}{\text { hyp }} \\
\cos 66^{\circ} & =\frac{a}{9.6} \\
9.6 \cos 66^{\circ} & =a \\
3.9 \mathrm{~m} & \approx a
\end{aligned}
$$

Solve for $(c+d)$.

$$
\begin{aligned}
\sin \theta & =\frac{\text { opp }}{\text { hyp }} \\
\sin 66^{\circ} & =\frac{(c+d)}{9.6}
\end{aligned}
$$

$$
9.6 \sin 66^{\circ}=(c+d)
$$

$$
8.8 \approx(c+d)
$$

The angle of 75° can be divided into two angles: one between sides $(c+d)$ and 9.6 m , and one between sides $(c+d)$ and 5.9 m .

Angle between sides $(c+d)$ and 9.6 m :
$180^{\circ}-90^{\circ}-66^{\circ}=24^{\circ}$
Angle between sides $(c+d)$ and 5.9 m : $75^{\circ}-24^{\circ}=51^{\circ}$

Solve for d.

$$
\begin{aligned}
\cos \theta & =\frac{\text { adj }}{\text { hyp }} \\
\cos 51^{\circ} & =\frac{d}{5.9} \\
5.9 \cos 51^{\circ} & =d \\
3.7 \mathrm{~m} & \approx d
\end{aligned}
$$

Solve for c.

$$
\begin{aligned}
c+d & \approx 8.8 \\
c+3.7 & \approx 8.8 \\
c & \approx 8.8-3.7 \\
c & \approx 5.1 \mathrm{~m}
\end{aligned}
$$

Solve for b.

$$
\begin{aligned}
\sin \theta & =\frac{\text { opp }}{\text { hyp }} \\
\sin 51^{\circ} & =\frac{b}{5.9} \\
5.9 \sin 51^{\circ} & =b \\
4.6 \mathrm{~m} & \approx b
\end{aligned}
$$

Calculate the area of the larger triangle.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(c+d)(a)$
$A=\frac{1}{2}(8.8)(3.9)$
$A=17.16 \mathrm{~m}^{2}$
Calculate the area of the smaller triangle.
$A=\frac{1}{2} b h$
$A=\frac{1}{2} d b$
$A=\frac{1}{2}(3.7)(4.6)$
$A=8.51 \mathrm{~m}^{2}$

Calculate the area of the rectangle.
$A=l w$
$A=c b$
$A=5.1 \times 4.6$
$A=23.46 \mathrm{~m}^{2}$
Calculate the total area.
$A=17.16+8.51+23.46$
$A=49.13 \mathrm{~m}^{2}$

The landscape designer will need a total of about $49.13 \mathrm{~m}^{2}$ of patio tiles.
PTS: 1 DIF: Moderate REF: 4.1 OBJ: Geometry
LOC: G-SO1 TOP: Solving for Angles, Lengths, and Distances
KEY: sine ratio|cosine ratio|area
5. ANS:
a)

b) Write two tangent ratios representing the two triangles shown in the diagram.

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{opp}}{\text { adj }} \\
\tan 23^{\circ} & =\frac{y}{(55+x)}
\end{aligned}
$$

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

$$
\tan 34^{\circ}=\frac{y}{x}
$$

Rearrange the second equation to solve for y.

$$
\begin{aligned}
\tan 34^{\circ} & =\frac{y}{x} \\
x \tan 34^{\circ} & =y
\end{aligned}
$$

Substitute this into the first equation.

$$
\begin{aligned}
\tan 23^{\circ} & =\frac{y}{(55+x)} \\
\tan 23^{\circ} & =\frac{x \tan 34^{\circ}}{(55+x)} \\
(55+x) \tan 23^{\circ} & =x \tan 34^{\circ} \\
55 \tan 23^{\circ}+x \tan 23^{\circ} & =x \tan 34^{\circ} \\
55 \tan 23^{\circ} & =x \tan 34^{\circ}-x \tan 23^{\circ} \\
55 \tan 23^{\circ} & =x\left(\tan 34^{\circ}-\tan 23^{\circ}\right) \\
\frac{55 \tan 23^{\circ}}{\left(\tan 34^{\circ}-\tan 23^{\circ}\right)} & =x \\
93.37 \mathrm{~m} & \approx x
\end{aligned}
$$

Calculate how far from the tree Stella took the measurement. $55+93.37=148.37 \mathrm{~m}$

She was about 148.37 m from the tree.
c) Substitute the value of x into the second equation written in part b).

$$
\begin{array}{r}
x \tan 34^{\circ}=y \\
93.37 \tan 34^{\circ}=y \\
62.98 \mathrm{~m} \approx \mathrm{y}
\end{array}
$$

The tree is about 62.98 m tall.

| PTS: | 1 | DIF: | Difficult REF: 4.2 |
| :--- | :--- | :--- | :--- | OBJ: Geometry

