chapter 8 Problem Set: Speed

Goal - Practise solving problems about speed. Be sure to show all your work.

1. Calculate the missing quantities in the table below.

\boldsymbol{v}	\boldsymbol{d}	\boldsymbol{t}
	8.0 m	4.0 s
$62.0 \mathrm{~m} / \mathrm{s}$		0.1 s
$50.0 \mathrm{~m} / \mathrm{s}$	25.0 m	

2. A cyclist travels along a straight road at a constant speed of $11.0 \mathrm{~m} / \mathrm{s}$. How far will she travel in one hour?
3. An airplane leaves Vancouver and lands in Toronto, a distance of approximately 4100 km , four hours and fifteen minutes later. What was the average speed of the plane?
4. Assuming an average speed of $900 \mathrm{~km} / \mathrm{h}$, an airplane has enough fuel to fly for 8.5 h . How far will the airplane fly in this time?
5. The circumference of Earth at the equator is approximately 40000 km . A supersonic jet can fly at an average speed of $1500 \mathrm{~km} / \mathrm{h}$. How long will it take the aircraft to travel around the equator, assuming it has enough fuel?
6. 7 km
7. $3.9 \mathrm{~m}[\mathrm{E}]$
8. $4.0 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$

BLM 3-11 Problem Set: Speed

1. $v=2.0 \mathrm{~m} / \mathrm{s} ; d=6.2 \mathrm{~m} ; t=0.5 \mathrm{~s}$
2. $d=39600 \mathrm{~m}=39.6 \mathrm{~km}$
3. $v=965 \mathrm{~km} / \mathrm{h}$
4. $d=7650 \mathrm{~km}$
5. $t=26.7 \mathrm{~h}$

BLM 3-14, Chapter 8 Quiz

1. B
2. C
3. D
4. A
5. C
6. D
7. B
8. D
9. B
10. B
11. C
12. D
13. A
14. B
15. G
16. E
17. (a) $9.0 \mathrm{~m} / \mathrm{s}$ [forward]
(b) 90 s
(c) $450 \mathrm{~m}[\mathrm{~N}]$
18. (a) $20 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$
(b) $10 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$
(c) $30 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$
19. The elevator is initially 3.0 m up and then rises, with uniform motion, to a position 6.0 m up during the first 10 s . The elevator then remains stationary at 6.0 m up for the next 10 s and then travels, with uniform motion, 6.0 m down to the origin during the last 10 s .

BLM 3-17, Problem Set: Acceleration

1. $\overrightarrow{\boldsymbol{a}}=4.7 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$
2. $\overrightarrow{\boldsymbol{a}}=-5.0 \mathrm{~km} / \mathrm{h} / \mathrm{s}[\mathrm{S}]$ or $5.0 \mathrm{~km} / \mathrm{h} / \mathrm{s}[\mathrm{N}]$
3. (a) $\vec{v}=0.5 \mathrm{~m} / \mathrm{s}$
(b) $\bar{v}=6.0 \mathrm{~m} / \mathrm{s}$
(c) $\overrightarrow{\boldsymbol{a}}=0.04 \mathrm{~m} / \mathrm{s}^{2}$
4. (a) $\vec{v}=8.5 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$
(b) $d=24 \mathrm{~m}[\mathrm{E}]$
