.

CONSTANTS AND CONVERSION FACTORS						
Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$						
1 electron volt, 1 eV = 1.60×10^{-19} J						
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$						
Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$						
Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$						
$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$						
$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$						
$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$						
, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{N} \cdot \text{m}^2$						
, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$						
$\mu_0 = 4\pi \times 10^{-7} \ (\text{T-m})/\text{A}$						
, $k' = \mu_0 / 4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$						
$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$						

ADVANCED PLACEMENT PHYSICS 2 TABLE OF INFORMATION

	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	Т
UNIT SYMBOLS	second,	S	newton,	Ν	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	А	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	Κ	joule,	J	henry,	Н		

PREFIXES					
Factor	Prefix	Symbol			
10 ¹²	tera	Т			
10^{9}	giga	G			
10 ⁶	mega	М			
10^{3}	kilo	k			
10^{-2}	centi	с			
10^{-3}	milli	m			
10 ⁻⁶	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	р			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos\theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	~

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. In all situations, positive work is defined as work done <u>on</u> a system.
- III. The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

MECH	ANICS	ELECTRICITY AND MAGNETISM		
$v_x = v_{x0} + a_x t$ $x = x_0 + v_{x0}t + \frac{1}{2}a_x t^2$	a = acceleration d = distance E = energy E = force	$\left \vec{F}_{E}\right = \frac{1}{4\pi\varepsilon_{0}} \frac{\left q_{1}q_{2}\right }{r^{2}}$ \vec{F}_{E}	A = area B = magnetic field C = capacitance d = distance	
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$ $\sum_{x=1}^{n} \vec{F}$	f = foree f = frequency h = height I = rotational inertia K = kinetic energy	$E = \frac{1}{q}$ $\left \vec{E}\right = \frac{1}{4\pi\varepsilon_0} \frac{ q }{r^2}$	E = electric field $E = emf$ $F = force$ $L = current$	
$\vec{a} = \frac{\sum i}{m} = \frac{i_{nel}}{m}$ $\left \vec{F}_f\right \le \mu \left \vec{F}_n\right $	k = spring constant k = spring constant L = angular momentum $\ell = \text{length}$	$\Delta U_E = q \Delta V$ $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	ℓ = length P = power Q = charge	
$a_c = \frac{v^2}{r}$ $\vec{p} = m\vec{v}$	m = mass $P = power$ $p = momentum$ $r = radius or separation$	$\left \vec{E}\right = \left \frac{\Delta V}{\Delta r}\right $	q = point charge R = resistance r = separation t = time	
$\Delta \vec{p} = \vec{F} \Delta t$ $r_{c} = 1 - 2$	T = period t = time U = potential energy v = speed	$\Delta V = \frac{1}{C}$ $C = \kappa \varepsilon_0 \frac{A}{d}$	U = potential (stored) energy V = electric potential v = speed	
$K = \frac{1}{2}mv$ $\Delta E = W = F_{\parallel}d = Fd\cos\theta$	W = work done on a system x = position $\alpha = \text{angular acceleration}$ $\mu = \text{coefficient of friction}$	$E = \frac{Q}{\varepsilon_0 A}$ $U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$	$ \rho = \text{resistivity} $ $ \theta = \text{angle} $ $ \Phi = \text{flux} $	
$P = \frac{\Delta E}{\Delta t}$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	θ = angle τ = torque ω = angular speed	$I = \frac{\Delta Q}{\Delta t}$ $R = \frac{\rho \ell}{\Delta t}$	$\vec{F}_M = q\vec{v} \times \vec{B}$	
$\omega = \omega_0 + \alpha t$	$U_s = \frac{1}{2}kx^2$	$K = \frac{1}{A}$ $P = I \Delta V$	$\left \vec{F}_{M}\right = \left q\vec{v}\right \left \sin\theta\right \left \vec{B}\right $ $\vec{F}_{M} = \vec{U} \times \vec{B}$	
$x = A\cos(\omega t) = A\cos(2\pi f t)$ $x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	$\Delta U_g = mg \Delta y$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$	$I = \frac{\Delta V}{R}$ $R_s = \sum_i R_i$	$\left \vec{F}_{M}\right = \left \vec{I}\vec{\ell}\right \sin\theta \vec{B} $	
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	$T_s = 2\pi \sqrt{\frac{m}{k}}$	$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$ $C_p = \sum C_i$	$\Phi_B = \vec{B} \cdot \vec{A}$ $\Phi_B = \left \vec{B} \right \cos \theta \left \vec{A} \right $	
$L = I\omega$ $\Delta L = \tau \Delta t$	$T_p = 2\pi \sqrt{\frac{\epsilon}{g}}$ $\left \vec{F}_g \right = G \frac{m_1 m_2}{r^2}$	$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$	$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$ $\varepsilon = B\ell v$	
$K = \frac{1}{2}I\omega^2$ $ \vec{F}_s = k \vec{x} $	$\vec{g} = \frac{\vec{F}_g}{m}$	$B = \frac{\mu_0}{2\pi} \frac{I}{r}$		
	$c_G = r$			

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS

.....

....

FLUID MECHANICS A	ND THERMAL PHYSICS	WAVES AND OPTICS		
$ \rho = \frac{m}{V} $	A = area F = force h = depth	$\lambda = \frac{v}{f}$	d = separation f = frequency or focal length	
$P = \frac{F}{A}$	k = thermal conductivity K = kinetic energy	$n = \frac{c}{v}$	h = height L = distance	
$P = P_0 + \rho g h$	L = thickness m = mass	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	M = magnification m = an integer	
$F_b = \rho V g$	n = number of moles N = number of molecules	$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$	n = index of refraction	
$A_1 v_1 = A_2 v_2$	P = pressure Q = energy transferred to a	$ M = \left \frac{h_i}{h_o}\right = \left \frac{s_i}{s_o}\right $	s = distance v = speed	
$P_1 + \rho g y_1 + \frac{1}{2} \rho {v_1}^2$	system by heating T = temperature	$\Delta L = m\lambda$ $d\sin\theta = m\lambda$	λ = wavelength θ = angle	
$= P_2 + \rho g y_2 + \frac{1}{2} \rho {v_2}^2$	t = time U = internal energy			
$\frac{Q}{\Delta t} = \frac{kA \Delta T}{L}$	V = volume v = speed W = work done on a system	GEOMETRY AN	D TRIGONOMETRY	
$PV = nRT = Nk_BT$	y = height a = density	Rectangle $A = bh$	A = area C = circumference	
$K = \frac{3}{2}k_BT$	p – donowy	Triangle $A = \frac{1}{2}bb$	V = volume S = surface area b = base	
$W = -P \Delta V$		$A = \frac{1}{2}bh$	h = height $\ell = \text{length}$	
$\Delta U = Q + W$		Circle $A = \pi r^2$	w = width r = radius	
MODER	N PHYSICS	$C = 2\pi r$		
$E = hf$ $K_{\max} = hf - \phi$	E = energy f = frequency K = binetic energy	Rectangular solid $V = \ell w h$	Right triangle $c^2 = a^2 + b^2$	
$\lambda = \frac{h}{p}$	m = mass p = momentum	Cylinder $V = \pi r^2 \ell$	$\sin\theta = \frac{a}{c}$	
$E = mc^2$	λ = wavelength ϕ = work function	$S = 2\pi r\ell + {}^2\pi^{r_2}$	$\cos\theta = \frac{1}{c}$	
		Sphere $V = \frac{4}{\pi}r^3$	$\tan \theta = \frac{a}{b}$	
		$S = 4\pi r^2$	$\theta = 90^{\circ}$	

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS

: