.

ADVANCED PLACEMENT PHYSICS 1 1	TABLE OF INFORMATION
--------------------------------	----------------------

CONSTANTS AND CONVERSION FACTORS										
Proton mass, $m_p = 1.67 \times 10^{-27}$ kg				kg	Electron charge magnitude,			$e = 1.60 \times 10^{-19} \text{ C}$		
Neutron mass, $m_n = 1.67 \times 10^{-27}$ kg				kg	Coulomb's law constant,			$k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$		
Electron mass, $m_e = 9.11 \times 10^{-31}$ kg				kg	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$.g.s ²		
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$				n/s	Accelera	tion due to grav		$= 9.8 \text{ m/s}^2$		
		meter,	m	kelvi	n, K	watt,	W	degree Celsius,	°C	
	UNIT	kilogram,	kg	hertz	z, Hz	coulomb,	С			
	SYMBOLS	second,	S	newto	on, N	volt,	V			

J

PREFIXES						
Factor	Prefix	Symbol				
10 ¹²	tera	Т				
10 ⁹	giga	G				
10 ⁶	mega	М				
10 ³	kilo	k				
10 ⁻²	centi	с				
10^{-3}	milli	m				
10 ⁻⁶	micro	μ				
10 ⁻⁹	nano	n				
10 ⁻¹²	pico	р				

ampere,

А

joule,

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
sinθ	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
tan θ	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

Ω

The following conventions are used in this exam.

ohm,

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done <u>on</u> a system.IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

MECI	HANICS	ELECTRICITY				
$v_x = v_{x0} + a_x t$ $x = x_0 + v_{x0}t + \frac{1}{2}a_x t^2$	a = acceleration d = distance E = energy	$\left \vec{F}_{E}\right = k \frac{\left q_{1}q_{2}\right }{r^{2}}$ Δq	A = area F = force I = current			
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	f = frequency F = force h = height I = rotational inertia	$I = \frac{\Delta q}{\Delta t}$ $R = \frac{\rho \ell}{A}$	ℓ = length P = power q = charge R = resistance			
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy k = spring constant	$I = \frac{\Delta V}{R}$	r = separation t = time			
$\begin{aligned} \left \vec{F}_f \right &\le \mu \left \vec{F}_n \right \\ a_c &= \frac{v^2}{r} \end{aligned}$	L = angular momentum ℓ = length m = mass	$P = I \Delta V$ $R_s = \sum_i R_i$	V = electric potential $\rho =$ resistivity			
$\vec{p} = m\vec{v}$	P = power $p = momentum$ $r = radius or separation$ $T = period$	$\frac{1}{R_p} = \sum_{i}^{l} \frac{1}{R_i}$				
$\Delta \vec{p} = \vec{F} \Delta t$	t = time					
$K = \frac{1}{2}mv^2$	U = potential energy V = volume v = speed		AVES			
$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	W = work done on a system x = position	$\lambda = \frac{v}{f}$ $v =$	frequency speed wavelength			
$P = \frac{\Delta E}{\Delta t}$	α = angular acceleration μ = coefficient of friction	GEOMETRY AN	GEOMETRY AND TRIGONOMETRY			
$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	θ = angle ρ = density	Rectangle $A = bh$	A = area C = circumference V = volume			
$\omega = \omega_0 + \alpha t$ $x = A\cos(2\pi ft)$	τ = torque ω = angular speed	Triangle $A = \frac{1}{2}bh$	S = surface area b = base			
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	$\Delta U_g = mg \Delta y$ $T = \frac{2\pi}{m} = \frac{1}{f}$	Circle $A = \pi r^2$	h = height $\ell = \text{length}$ w = width r = radius			
$\tau = r_{\perp}F = rF\sin\theta$	ωf	$C = 2\pi r$	7 – Taulus			
$L = I\omega$ $\Delta L = \tau \Delta t$	$T_s = 2\pi \sqrt{\frac{m}{k}}$	Rectangular solid $V = \ell w h$	Right triangle $c^2 = a^2 + b^2$			
$K = \frac{1}{2}I\omega^2$	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$	Cylinder $V = \pi r^2 \ell$	$\sin\theta = \frac{a}{c}$			
$\left \vec{F}_{s} \right = k \left \vec{x} \right $	$\left \vec{F}_{g}\right = G \frac{m_1 m_2}{r^2}$	$S = 2\pi r\ell + 2\pi r^2$	$\cos \theta = \frac{b}{c}$ $\tan \theta = \frac{a}{b}$			
$U_s = \frac{1}{2}kx^2$	$\vec{g} = \frac{\vec{F}_g}{m}$	Sphere $V = \frac{4}{3}\pi r^3$	c a			
$ \rho = \frac{m}{V} $	$U_G = -\frac{Gm_1m_2}{r}$	$S = 4\pi r^2$	$\theta 90^{\circ}_{\Box}$			

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS

.....