ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS			
Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$	Electron charge magnitude, $\quad e=1.60 \times 10^{-19} \mathrm{C}$		
Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$	Coulomb's law constant,	$k=1 / 4 \pi \varepsilon_{0}=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$	
Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	Universal gravitational	constant,	$G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$
Speed of light,	$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	Acceleration due to gravity	
at Earth's surface,	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$		

UNIT	meter,	m	kelvin,	K	watt,	W	degree Celsius,	${ }^{\circ} \mathrm{C}$
	kilogram,	kg	hertz,	Hz	coulomb,	C		
	Second,	s	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES		
Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following conventions are used in this exam.
I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
II. Assume air resistance is negligible unless otherwise stated.
III. In all situations, positive work is defined as work done on a system.
IV. The direction of current is conventional current: the direction in which positive charge would drift.
V. Assume all batteries and meters are ideal unless otherwise stated.

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS

MECHANICS	ELECTRICITY	
$\begin{array}{ll} v_{x}=v_{x 0}+a_{x} t & a=\text { acceleration } \\ d=\text { distance } \end{array}$	$\left\|\vec{F}_{E}\right\|=k \frac{\left\|q_{1} q_{2}\right\|}{r^{2}} \quad \begin{array}{ll} A & =\text { area } \\ F & =\text { force } \end{array}$	
$\begin{array}{ll} x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2} & E=\text { energy } \\ & f=\text { frequency } \end{array}$	$\begin{array}{ll} I=\frac{\Delta q}{\Delta t} & \ell=\text { current } \\ \ell & =\text { length } \end{array}$	
$v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \begin{aligned} & F=\text { force } \\ & h=\text { height }\end{aligned}$	$P=\text { power }$ $q=\text { charge }$	
$\cdots \vec{F} \quad \vec{F}$	$R=\frac{\rho}{A} \quad R=$ resistance	
$\begin{array}{ll} \vec{a}=\frac{\sum F}{m}=\frac{F_{\text {net }}}{m} & K=\text { kinetic energy } \\ k=\text { spring constant } \end{array}$	$I=\frac{\Delta V}{R} \quad \begin{aligned} r & =\text { separation } \\ t & =\text { time } \end{aligned}$	
$\left\|\vec{F}_{f}\right\| \leq \mu\left\|\vec{F}_{n}\right\| \quad \begin{aligned} L & =\text { angular momentum } \\ \ell & =\text { length } \end{aligned}$	$P=I \Delta V \quad \begin{array}{ll} V & =\text { electric potential } \\ \rho & =\text { resistivity } \end{array}$	
$a^{2}=v^{2} \quad m=$ mass	$R_{s}=\sum_{i} R_{i}$	
$a_{c}=\frac{v^{\prime}}{r} \quad P=$ power		
$\vec{p}=m \vec{v} \quad p=$ momentum	$\frac{1}{R_{p}}=\sum \frac{1}{R_{i}}$	
$\begin{aligned} \vec{p}=m \vec{v} & r & =\text { radius or separation } \\ \vec{v} & T & =\text { period } \end{aligned}$	$\frac{1}{R_{p}}-\sum_{i} \frac{1}{R_{i}}$	
$\begin{array}{ll} \Delta \vec{p}=\vec{F} \Delta t & T=\text { period } \\ t=\text { time } \end{array}$		
$K=\frac{1}{2} m v^{2}$	WAVES	
$\begin{aligned} \Delta E=W=F_{\\|} d=F d \cos \theta & \begin{array}{l} W \end{array}=\text { work done on a system } \\ x & =\text { position } \end{aligned}$	$\begin{array}{ll} \lambda=\frac{v}{f} & \\ & v=\text { speed } \\ \lambda & =\text { wavelength } \end{array}$	
$P=\frac{\Delta E}{\Delta t} \quad \begin{array}{ll} \alpha & =\text { angular acceleration } \\ \mu & =\text { coefficient of friction } \end{array}$	GEOMETRY AND TRIGONOMETRY	
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \quad \begin{array}{ll} \theta=\text { angle } \\ \rho=\text { density } \end{array}$	Rectangle $A=$ area $A=b h$ $C=$ circumference $V=$ volume	
$\omega=\omega_{0}+\alpha t$ $\tau=$ torque $\omega=$ angular speed	Triangle $S=$ surface area $A=\frac{1}{2} b h \quad b=$ base	
$x=A \cos (2 \pi f t) \quad \Delta U_{g}=m g \Delta y$	$A=\frac{i}{2} b h$ $h=$ height $\ell=$ length	
$\begin{array}{ll} \vec{\alpha}=\frac{\sum \vec{\tau}}{I}=\frac{\vec{\tau}_{\text {net }}}{I} & T=\frac{2 \pi}{\omega}=\frac{1}{f} \\ \tau=r_{\perp} F=r F \sin \theta & \end{array}$	$\begin{array}{ll} \text { Circle } & \ell=\text { lengtn } \\ A=\pi r^{2} & w=\text { width } \\ C=2 \pi r & \end{array}$	
$\begin{array}{ll} L=I \omega & T_{s}=2 \pi \sqrt{\frac{m}{k}} \\ \Delta L=\tau \Delta t & \end{array}$	Rectangular solid $V=\ell w h$ Right triangle $c^{2}=a^{2}+b^{2}$	
$K=\frac{1}{2} I \omega^{2} \quad T_{p}=2 \pi \sqrt{\frac{\ell}{g}}$	$\begin{aligned} & \text { Cylinder } \\ & V=\pi r^{2} \ell \end{aligned} \quad \sin \theta=\frac{a}{c}$	
$\left\|\vec{F}_{s}\right\|=k\|\vec{x}\| \quad\left\|\vec{F}_{g}\right\|=G \frac{m_{1} m_{2}}{r^{2}}$	$S=2 \pi r \ell+2 \pi r^{2} \quad \cos \theta=\frac{b}{c}$	
$U_{s}=\frac{1}{2} k x^{2} \quad \vec{g}=\frac{\vec{F}_{g}}{m}$	Sphere $\tan \theta=\frac{a}{b}$ $V=\frac{4}{3} \pi r^{3}$	
$\rho=\frac{m}{V} \quad U_{G}=-\frac{G m_{1} m_{2}}{r}$	$S=4 \pi r^{2} \quad \frac{\theta \quad 90^{\circ}}{b}$	

