\qquad
\qquad DATE: \qquad
DISCOVERING DENSITY
What do you know about density? Take 5 minutes to collect some information about density. In your own words, explain to your partner what density is.
P.O.E. - Soda Style
a) A can of regular coke is dropped into water.

Prediction : \qquad
Observation: Coke Sinks
Explanation (Why did this happen)?
\qquad
\qquad
Prediction: \qquad
Observation: \qquad Diet Coke \ddagger boats

Explanation (Why did this happen)?
\qquad
\qquad

DENSITY: the \qquad mass per unit of \qquad volume .

- Mass of can of Coke = \qquad 255 g Mass of can of Diet Coke = \qquad 2499
- The regular Coke has more \qquad mass for the \qquad same volume, so the density of the regular Coke is greater .

Density describes how fighth packed the particles are in a material.

In the diagram to the left, describe the spacing of the particles in the solid block, the liquid, and in the gas.

Solid: h-ghtlypacked (little space)
Liquid: enough space to slip/slide
Gas: veryfar apart

Most substances are more dense in their \qquad solid form than in their liquid form.
\rightarrow Knowing this, how do you think temperature and density are related?
\qquad
\rightarrow Can you think of an exception? Water!. (ice less Dense than liquid)

Fluids that do not mix will form layers based on density!
\rightarrow Fluids with a _LO WeI_ density "float" on top of fluids with a _higher density
\rightarrow If a fluid has a density less than water $1.00 \mathrm{~g} / \mathrm{cm}^{3}$, it will float on water.
P.O.E. WACKY WATER
a) Oil is combined with water.

Prediction:
Observation: \qquad Oil Floats
Explanation (Why did this happen)?
0,1 is less dense
b) Salt water is combined with fresh water.

Prediction: \qquad
Observation: Fresh Water Floats
Explanation (Why did this happen)?
Fresh water is less dense

Calculating Density:

Sample Problems

1. The mass of a rock is 75 g and its volume is $3 \mathrm{~cm}^{3}$. Determine the density of the rock.

Step 1: List known and unknown quantities.

$$
\begin{aligned}
& \mathrm{m}=75 \mathrm{~g} \\
& \mathrm{v}=3 \mathrm{~cm}^{3} \\
& \mathrm{D}=?
\end{aligned}
$$

Step 2: Use a proportion or algebra to solve for the missing variable

$$
D=\frac{m}{V}=\frac{75 \mathrm{~g}}{3 \mathrm{~cm}^{3}}=25 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Step 3: Make a final written statement (including correct units) that answers the question.
The density of the rock is $25 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$.
2. A bottle of orange juice has a volume of 100 mL and a mass of 250 grams. Calculate the density of the orange juice in g / mL.
(1) GIVEN
(2) FORMULA
(3) SOLVE
(4) SENTENCE

$$
\begin{aligned}
& V=100 \mathrm{~mL} \\
& m=250 \mathrm{~g}
\end{aligned} \quad D=\frac{250 \mathrm{~g}}{100 \mathrm{~mL}} \div 2.5 \frac{\mathrm{~g}}{\mathrm{~mL}}
$$

The density of the juice is $2.5 \mathrm{~g} / \mathrm{mL}$.
3. A rock is dropped into a can of water and causes 25 mL of water to be displaced. The mass of the rock is 150 g . Calculate the density of the rock in $\mathrm{g} / \mathrm{cm}^{3}$.

$$
\begin{array}{ll}
m=158 \mathrm{~g} \\
V=25 \mathrm{~mL} & D=\frac{150 \mathrm{~g}}{25 \mathrm{~mL}}=69 / \mathrm{mL}
\end{array}
$$

$$
D=\frac{m}{V}
$$

The density of the rock is $6 \mathrm{~g} / \mathrm{mL}$
4. a) The dimensions of a rectangular block of wood are 5 cm for width, 10 cm for length and 2 cm for height. Find the volume of the block.

$$
\begin{aligned}
V & =l \cdot w \cdot h \\
& =10 \mathrm{~cm} \cdot 5 \mathrm{~cm} \cdot 2 \mathrm{~cm}=100 \mathrm{~cm}^{3}
\end{aligned}
$$

b) If the mass is 65 g , what is the density of the block?

$$
\begin{aligned}
& m=659 \\
& V=100 \mathrm{~cm}^{3}
\end{aligned} \quad D=\frac{m}{V}=\frac{65 \mathrm{~g}}{100 \mathrm{~cm}^{3}}=0.659 / \mathrm{cm}^{3}
$$

The density of the block is $0.659 / \mathrm{cm}^{3}$
c) Will the block float or sink in water? Give a reason for your answer.

Float! Objects that are less dens float on top of objects that are more dense because their particles are less tightly packed.

Assignment: - add (O) rocahyary sheet: meniscus, density, density of water (hist write thequmerifal value),

