NAME:_	Lev	
BLOCK:	DATE	:

DISCOVERING DENSITY

What do you know about density? Take 5 minutes to collect some information about density. In your own words, explain to your partner what density is.

a) A can of regular coke is dropped into water.	b) A can of diet coke is dropped into water.
Prediction :	Prediction:
Observation: <u>Coke Sinks</u>	Observation: Diet Coke Floats
Explanation (Why did this happen)?	Explanation (Why did this happen)?
• Mass of can of Coke = 2559 Mass • The regular Coke has more Mass for to Coke is Accater.	
0	
Density describes how tighty packe	the particles are in a material.
In the diagram to the block, the liquid, and	e left, describe the spacing of the particles in the solid I in the gas.
In the diagram to the block, the liquid, and	e left, describe the <u>spacing</u> of the particles in the solid I in the gas. I packed (liffle space) space to slip/slide
In the diagram to the block, the liquid, and Solid: hand	e left, describe the spacing of the particles in the solid in the gas. packed (liffle space) space to slip/slide apart
In the diagram to the block, the liquid, and Solid: _hghtly Liquid: enagh Gas: _Very far. → Knowing this, how do you think tempera	e left, describe the spacing of the particles in the solid in the gas. packed (little space) space to slip/slide apart

Fluids that do not mix will form layers based on density!

- → Fluids with a 10Wer density "float" on top of fluids with a higher density
- → If a fluid has a density less than water 1.00 g/cm³, it will <u>float</u> on water.

P.O.E. WACKY WATER

- Prediction:

 Observation:

 Explanation (Why did this happen)?
 - Oil is less dense

a) Oil is combined with water.

b) Salt water is combined with fresh water.

Prediction: _____

Observation: Fish Water Floats

Explanation (Why did this happen)?

Fresh water is less dense

Calculating Density:

Density =
$$\frac{Mass}{\left(\frac{g}{cm^3} \text{ or } \frac{g}{mL}\right)}$$
 Volume $\left(\frac{g}{cm^3} \text{ or } \frac{g}{mL}\right)$

Sample Problems

- 1. The mass of a rock is 75g and its volume is 3cm³. Determine the density of the rock.
 - Step 1: List known and unknown quantities.

Step 2: Use a proportion or algebra to solve for the missing variable * INCLUDE UNITS*

$$D = \frac{m}{V} = \frac{759}{3 \text{ cm}^3} = 25 \frac{9}{\text{cm}^3}$$

<u>Step 3:</u> Make a final written statement (including correct units) that answers the question.

The density of the rock is $25\frac{9}{\text{cm}^3}$

PRACTICE: DENSITY CALCULATIONS

2. A bottle of orange juice has a volume of 100mL and a mass of 250 grams. Calculate the density of the orange juice in g/mL.

3. A rock is dropped into a can of water and causes 25mL of water to be displaced. The mass of the rock is 150g. Calculate the density of the rock in g/cm³.

M=1509
$$D = \frac{1509}{25mL} = 6.9/mL$$
 $V = 25mL$

The donsity of the rock is 6.9/mL

4. a) The dimensions of a rectangular block of wood are 5 cm for width, 10 cm for length and 2 cm for height. Find the volume of the block.

b) If the mass is 65g, what is the density of the block?

$$M=659$$
 $V=100 \text{ cm}^3$ $D=\frac{m}{V}=\frac{659}{100 \text{ cm}^3}=0.659/\text{cm}^3$

The density of the block is 0.65 9/cm3

c) Will the block float or sink in water? Give a reason for your answer.

Float! Objects that are less dense float on top of objects that are more dense because their particles are less tightly packed.

Assignment: - add to vocabulary sheet: meniscus, density, density of water (last write the numerical value)
- complete the density worksheet on the back of this page