
Oscillations
“There is nothing so small, as to escape our inquiry; hence there is a new visible World discovered
to the understanding.”

—Robert Hooke

Seventeenth-century British physicist Robert Hooke helped pave the way for simple harmonic
motion. Previously, Newton’s laws of static equilibrium made it possible to show a relationship
between stress and strain for complex objects. Building upon these, he developed laws on simple
harmonic motion that are named after him today—Hooke’s Law. Hooke is credited as the
discoverer of the concise mathematical relationship of a spring.

In this section, we will focus on periodic motion that’s straightforward which will help to describe
oscillations and other simple harmonic motions.



SIMPLE HARMONIC MOTION
In the series of diagrams below is a fixed block on the left side of a wall. When the spring is neither
stretched nor compressed (when it sits at its natural length), it is said to be in its equilibrium
position. When the block is in equilibrium, the net force on the block is zero. We label this position
as x = 0.

Let’s start with a spring at rest (Diagram 1). First, we pull the block to the right, where it will
experience a force pulling back toward equilibrium (Diagram 2). This force brings the block back
through the equilibrium position (Diagram 3), and the block’s momentum carries it past that point
to location x = ‒A. At this point, the block will again be experiencing a force that pushes it toward
the equilibrium position (Diagram 4). Once again, the block passes through the equilibrium
position, but it’s traveling to the right this time (Diagram 5). If this is taking place in ideal
conditions (no friction), this back-and-forth motion will continue indefinitely and the block will
oscillate from these positions in the same amount of time. The oscillations of the block at the end of
this spring provide us with the physical example of simple harmonic motion (often abbreviated
SHM).

The Dynamics of SHM



Force
Since the block is accelerating and decelerating, there must be some force that is making it do so. In
the case of a spring, the spring exerts a force on the block that is proportional to its displacement
from its equilibrium point. Setting the equilibrium point as x = 0, the force exerted by the spring is

F = ‒kx

This is known as Hooke’s Law. The proportionality constant, k, is called the spring constantand
tells us how strong the spring is. The greater the value of k, the stiffer and stronger the spring is.
The minus sign in Hooke’s Law tells us that the force is a restoring force. A restoring force simply
means that the force wants to return the object back to its equilibrium position. Hence, in the
previous diagrams, when the block was on the left (when the position is negative), the force exerted
was to the right; and when the block was on the right (when the position is positive), the force
exerted was to the left. In all cases of the extreme left or right, the spring has a tendency to return
to its original length or equilibrium position. This force helps to maintain the oscillations.

Example 1 A 12 cm-long spring has a force constant (k) of 400 N/m. How
much force is required to stretch the spring to a length of 14 cm?

Solution. The displacement of the spring has a magnitude of 14 ‒ 12 = 2 cm = 0.02 m so,
according to Hooke’s Law, the spring exerts a force of magnitude F = kx = (400 N/m)(0.02 m) = 8
N. Therefore, we’d have to exert this much force to keep the spring in this stretched state.

During the oscillation, the force on the block is zero when the block is at equilibrium (the point we
designate as x = 0). This is because Hooke’s Law says that the strength of the spring’s restoring
force is given by the equation F = kx, so F = 0 at equilibrium. The acceleration of the block is also
equal to zero at x = 0, since F = 0 at x = 0 and a = F/m. At the endpoints of the oscillating region,
where the block’s displacement, x, has the greatest magnitude, the restoring force and the
magnitude of the acceleration are both at their maximums.

Amplitude
The maximum displacement from equilibrium is called the amplitude of oscillation and is denoted
by A. So instead of writing x = xmax, we write x = A (x = ‒xmax is x = ‒A). This number tells us how
far to the left and right of equilibrium the block will travel.



SHM in Terms of Energy
Another way to describe the block’s motion is in terms of energy transfers. A stretched or
compressed spring stores elastic potential energy, which is transformed into kinetic energy
(and back again); this shuttling of energy between potential and kinetic causes the oscillations. For
a spring with spring constant k, the elastic potential energy it possesses—relative to its equilibrium
position—is given by the following equation:

Us =  kx2

Notice that the farther you stretch or compress a spring, the more work you have to do, and, as a
result, the more potential energy that’s stored.

Maximum Potential Energy
The maximum potential energy is when x = A or x = ‒A.

In terms of energy transfers, we can describe the block’s oscillations as follows. When you initially
pull the block out, you increase the elastic potential energy of the system. Upon releasing the block,
this potential energy turns into kinetic energy, and the block moves. As it passes through
equilibrium, US = 0, all the energy is kinetic. Then, as the block continues through equilibrium, it
compresses the spring and the kinetic energy is transformed back into elastic potential energy.

By Conservation of Mechanical Energy, the sum K + US is a constant. Therefore, when the block
reaches the endpoints of the oscillation region (that is, when x = ±xmax), US is maximized, so Kmust



be minimized; in fact, K = 0 at the endpoints. As the block is passing through equilibrium, x= 0,
so US = 0 and K is maximized.

Example 2 A block of mass m = 0.05 kg oscillates on a spring whose force
constant k is 500 N/m. The amplitude of the oscillations is 4.0 cm. Calculate
the maximum speed of the block.

Solution. First, let’s get an expression for the maximum elastic potential energy of the system:

When all this energy has been transformed into kinetic energy—which, as we discussed earlier,
occurs just as the block is passing through equilibrium—the block will have a maximum kinetic
energy and maximum speed of



Maximum Velocity
Only the maximum velocity can be calculated in a spring with this
method. The AP Physics 1 Exam will not ask you to calculate other
velocities at other points because this is not uniform accelerated
motion.

Example 3 A block of mass m = 2.0 kg is attached to an ideal spring of force
constant k = 500 N/m. The amplitude of the resulting oscillations is 8.0 cm.
Determine the total energy of the oscillator and the speed of the block when it’s
4.0 cm from equilibrium.

Solution. The total energy of the oscillator is the sum of its kinetic and potential energies. By
Conservation of Mechanical Energy, the sum K + US is a constant, so if we can determine what this
sum is at some point in the oscillation region, we’ll know the sum at every point. When the block is
at its amplitude position, x = 8 cm, its speed is zero; so at this position, E is easy to figure out:

E = K + US = 0 +  kA2 =  (500 N/m)(0.08 m)2 = 1.6 J

This gives the total energy of the oscillator at every position. At any position x, we have

so when we substitute in the numbers, we get

Example 4 A block of mass m = 8.0 kg is attached to an ideal spring of force
constant k = 500 N/m. The block is at rest at its equilibrium position. An



impulsive force acts on the block, giving it an initial speed of 2.0 m/s. Find the
amplitude of the resulting oscillations.

Solution. The block will come to rest when all of its initial kinetic energy has been transformed
into the spring’s potential energy. At this point, the block is at its maximum displacement from
equilibrium, at one of its amplitude positions, and

Period and Frequency
As you watch the block oscillate, you should notice that it repeats each cycle of oscillation in the
same amount of time. A cycle is a round-trip: for example, from position x = A over to x = ‒A and
back again to x = A. The amount of time it takes to complete a cycle is called the period of the
oscillations, or T. If T is short, the block is oscillating rapidly, and if T is long, the block is oscillating
slowly.

Another way of indicating the rapidity of the oscillations is to count the number of cycles that can
be completed in a given time interval; the more completed cycles, the more rapid the oscillations.
The number of cycles that can be completed per unit time is called the frequency of the
oscillations, or f, and frequency is expressed in cycles per second. One cycle per second is
one hertz (abbreviated Hz). Do not confuse lowercase f (frequency) with uppercase F (Force).

Two Peas in a Pod
If you have the period, you can always get the frequency and vice-
versa. Note that the period and the frequency are reciprocals of each
other.

One of the most basic equations of oscillatory motion expresses the fact that the period and
frequency are reciprocals of each other:

Therefore,



Example 5 A block oscillating on the end of a spring moves from its position
of maximum spring stretch to maximum spring compression in 0.25 s.
Determine the period and frequency of this motion.

Solution. The period is defined as the time required for one full cycle. Moving from one end of the
oscillation region to the other is only half a cycle. Therefore, if the block moves from its position of
maximum spring stretch to maximum spring compression in 0.25 s, the time required for a full
cycle is twice as much; T = 0.5 s. Because frequency is the reciprocal of period, the frequency of the
oscillations is f = 1/T = 1/(0.5 s) = 2 Hz.

Example 6 A student observing an oscillating block counts 45.5 cycles of
oscillation in one minute. Determine its frequency (in hertz) and period (in
seconds).

Solution. The frequency of the oscillations, in hertz (which is the number of cycles per second), is

Therefore,

One of the defining properties of the spring-block oscillator is that the frequency and period can be
determined from the mass of the block and the force constant of the spring. The equations are as
follows:

A useful mnemonic for remembering this equation is to go in
alphabetical order (clockwise) for frequency (f to k to m) and reverse
alphabetical for period (T to m to k).

Let’s analyze these equations. Suppose we had a small mass on a very stiff spring; then intuitively,
we would expect that this strong spring would make the small mass oscillate rapidly, with high
frequency and short period. Both of these predictions are substantiated by the equations above,
because if m is small and k is large, then the ratio k/m is large (high frequency) and the ratio m/kis
small (short period).

Example 7 A block of mass m = 2.0 kg is attached to a spring whose force
constant, k, is 300 N/m. Calculate the frequency and period of the oscillations
of this spring-block system.



Solution. According to the equations above,

Notice that f ≈ 2 Hz and T ≈ 0.5 s, and that these values satisfy the basic equation T = 1/f.

Example 8 A block is attached to a spring and set into oscillatory motion, and
its frequency is measured. If this block were removed and replaced by a second
block with 1/4 the mass of the first block, how would the frequency of the
oscillations compare to that of the first block?

Solution. Since the same spring is used, k remains the same. According to the equation given on
the previous page, f is inversely proportional to the square root of the mass of the block: .
Therefore, if m decreases by a factor of 4, then f increases by a factor of  = 2.

The equations we saw on the previous page for the frequency and period of the spring-block
oscillator do not contain A, the amplitude of the motion. In simple harmonic motion, both the
frequency and the period are independent of the amplitude. The reason that the frequency and
period of the spring-block oscillator are independent of amplitude is that F, the strength of the
restoring force, is proportional to x, the displacement from equilibrium, as given by Hooke’s
Law: FS = ‒kx.

Example 9 A student performs an experiment with a spring-block simple
harmonic oscillator. In the first trial, the amplitude of the oscillations is 3.0 cm,
while in the second trial (using the same spring and block), the amplitude of
the oscillations is 6.0 cm. Compare the values of the period, frequency, and
maximum speed of the block between these two trials.

Solution. If the system exhibits simple harmonic motion, then the period and frequency are

independent of amplitude. This is because the same spring and block were used in the two trials, so

the period and frequency will have the same values in the second trial as they had in the first. But

the maximum speed of the block will be greater in the second trial than in the first. Since the

amplitude is greater in the second trial, the system possesses more total energy (E = kA2). So

when the block is passing through equilibrium (its position of greatest speed), the second system

has more energy to convert to kinetic, meaning that the block will have a greater speed. In fact,



from Example 2, we know that vmax =  so, since A is twice as great in the second trial than in

the first, vmax will be twice as great in the second trial than in the first.

Example 10 For each of the following arrangements of two springs, determine
the effective spring constant, keff. This is the force constant of a single
spring that would produce the same force on the block as the pair of springs
shown in each case.

(d) Determine keff in each of these cases if k1 = k2 = k.

Solution.

(a) Imagine that the block was displaced a distance x to the right of its equilibrium position. Then
the force exerted by the first spring would be F1 = ‒k1x and the force exerted by the second
spring would be F2 = ‒k2x. The net force exerted by the springs would be

F1 + F2 = ‒k1x + (‒k2x) = ‒(k1 + k2)x

Since Feff = ‒(k1 + k2)x, we see that keff = k1 + k2.



(b) Imagine that the block was displaced a distance x to the right of its equilibrium position. Then
the force exerted by the first spring would be F1 = ‒k1x and the force exerted by the second
spring would be F2 = ‒k2x. The net force exerted by the springs would be

F1 + F2 = ‒k1x + ‒k2x = ‒(k1 + k2)x

As in part (a), we see that, since Feff = ‒(k1 + k2)x, we get keff = k1 + k2.

(c) Imagine that the block was displaced a distance x to the right of its equilibrium position.
Let x1 be the distance that the first spring is stretched, and let x2 be the distance that the
second spring is stretched. Then x = x1 + x2. But x1 = ‒F/k1 and x2 = ‒F/k2, so

Therefore,

(d) If the two springs have the same force constant, that is, if k1 = k2 = k, then in the first two
cases, the pairs of springs are equivalent to one spring that has twice their force
constant: keff = k1 + k2 = k + k = 2k. In (c), the pair of springs is equivalent to a single spring
with half their force constant:

Spring-Block Summary
We can summarize the dynamics of oscillations in this table:

Fortunately, this same table applies to springs, pendulums, and waves. All simple harmonic motion
follows this cycle.

THE SPRING-BLOCK OSCILLATOR: VERTICAL MOTION
So far we’ve looked at a block sliding back and forth on a horizontal table, but the block could also
oscillate vertically. The only difference would be that gravity would cause the block to move



downward, to an equilibrium position at which, in contrast with the horizontal SHM we’ve
examined, the spring would not be at its natural length. Of course, in calculating energy, the
gravitational potential energy (mgh) must be included.

Another Approach
Using a force diagram, let’s map out the situation described on this
page:

Our net force in this case is zero since it is neither moving up nor
moving down. So our force, by the spring, must cancel out with our
weight: kx = mg.

Consider a spring of negligible mass hanging from a stationary support. A block of mass m is
attached to its end and allowed to come to rest, stretching the spring a distance d. At this point, the
block is in equilibrium; the upward force of the spring is balanced by the downward force of
gravity. Therefore,



Once you have solved for the distance d, simply set this position as your new equilibrium
position x = 0. At this point, you can treat the vertical spring exactly as you would a horizontal
spring. Just be sure to measure distances relative to the new equilibrium when solving for any
values (spring force, potential energy, and so on) that have x in their formulas.

New Equilibrium
Normally our equilibrium for the spring (without a block) would be at
the position y. When we attach the block, our new equilibrium point
sits at (d + y). The only time you need to worry about this is if a
question asks about the total length of the spring at a given moment.
Use your horizontal spring equations to solve the question normally,
and then simply add d.

Example 11 A block of mass m = 1.5 kg is attached to the end of a vertical
spring of force constant k = 300 N/m. After the block comes to rest, it is pulled
down a distance of 2.0 cm and released.

(a) What is the frequency of the resulting oscillations?

(b) What are the minimum and maximum amounts of stretch of the spring
during the oscillations of the block?

Solution.



(a) The frequency is given by

(b) Before the block is pulled down, to begin the oscillations, it stretches the spring by a distance
calculated as follows:

Since the amplitude of the motion is 2.0 cm, the spring is stretched a maximum of 5 cm + 2.0
cm = 7 cm when the block is at the lowest position in its cycle, and a minimum of 5 cm ‒ 2.0
cm = 3 cm when the block is at its highest position.

PENDULUMS
A simple pendulum consists of a weight of mass m attached to a string or a massless rod that
swings, without friction, about the vertical equilibrium position. The restoring force is provided by
gravity and, as the figure on the next page shows, the magnitude of the restoring force when the
bob is θ to an angle to the vertical is given by the equation:

Frestoring = mg sin θ



Although the displacement of the pendulum is measured by the angle that it makes with the
vertical, rather than by its linear distance from the equilibrium position (as was the case for the
spring-block oscillator), the simple pendulum shares many of the important features of the spring-
block oscillator. For example,

Displacement is zero at the equilibrium position.

At the endpoints of the oscillation region (where θ = ±θmax), the restoring force and the
tangential acceleration (at) have their greatest magnitudes, the speed of the pendulum is zero,
and the potential energy is maximized.

As the pendulum passes through the equilibrium position, its kinetic energy and speed are
maximized.



Despite these similarities, there is one important difference. Simple harmonic motion results from
a restoring force that has a strength that is proportional to the displacement. The magnitude of the
restoring force on a pendulum is mg sin θ, which is not proportional to the displacement (θL, the
arc length, with the angle measured in radians). Strictly speaking, the motion of a simple pendulum
is not really simple harmonic. However, if θ is small, then sin θ ≈ θ (measured in radians) so, in this
case, the magnitude of the restoring force is approximately mgθ, which isproportional to θ. So
if θmax is small, the motion can be treated as simple harmonic.

More so than other topics, pendulum problems are often easier to
solve if θ is measured in radians than if it’s measured in degrees. If
you’re not comfortable working in radians, convert to degrees using
the conversion 180 degrees = π radians.

If the restoring force is given by mgθ, rather than mg sin θ, then the frequency and period of the
oscillations depend only on the length of the pendulum and the value of the gravitational
acceleration, according to the following equations:

Note that neither frequency nor the period depends on the amplitude (the maximum angular
displacement, θmax); this is a characteristic feature of simple harmonic motion. Also notice that



neither the frequency nor the period depends on the mass of the weight.

The same mnemonic we used for springs can be applied to
pendulums. The equation for frequency goes in alphabetical order
(clockwise), and the equation for period goes in reverse alphabetical
order (clockwise).

Example 12 A simple pendulum has a period of 1 s on Earth. What would its
period be on the Moon (where g is one-sixth of its value here)?

Solution. The equation T =  shows that T is inversely proportional to , so if gdecreases
by a factor of 6, then T increases by factor of . That is,



Summary

Hooke’s Law holds for most springs. Formulas to keep in mind are the following:

For small angle of a pendulum swing:
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