		Name:
AWM10	Ch. 7.3 Cosine Ratio	Notes
Label the following triangles wi	th,,	······································

If we do not happen to know the opposite side or the hypotenuse we have no use for the Sine ratio. There must then be a different trig ratio we can use.. One of the other trig ratios is the ______ ratio. This ratio will be used with a different combination of sides than the Sine ratio.

Use your calculator to find Cosine ratios (4 decimal places).

Cos 34°=	Cos 71°=
Cos 45°=	Cos 83°=
Cos 56°=	Cos 90°=

The Cosine Ratio.

We can use the Cosine ratio to solve for a missing side of a triangle if we know a certain angle in that triangle.

The Cosine Ratio

SOH**CAH**TOA

Α

Example 1: Which trig ratio would you use to solve the following problems?

Example 2: Find the length of the missing sides.

Example 3:

The angle of a cable from a point 12.5 metres from its base is 52°. How long is the cable?

Example 4:

How far from the base of a flagpole must a guy wire be fixed if the wire is 12 metres long and it makes an angle of 63° with the ground?

Example 5:

Find the Cosine ratio of the following diagram. You may need to use Pythagoras!!! **Example 6:** Find <M

