\qquad

AWM10
Ch. 7.3 Cosine Ratio
Notes
Label the following triangles with \qquad ,

If we do not happen to know the opposite side or the hypotenuse we have no use for the Sine ratio. There must then be a different trig ratio we can use.. One of the other trig ratios is the \qquad ratio. This ratio will be used with a different combination of sides than the Sine ratio.

Use your calculator to find Cosine ratios (4 decimal places).
$\cos 34^{\circ}=$ \qquad $\operatorname{Cos} 71^{\circ}=$ \qquad
$\operatorname{Cos} 45^{\circ}=$ $\operatorname{Cos} 83^{\circ}=$ \qquad
$\cos 56^{\circ}=$ \qquad $\operatorname{Cos} 90^{\circ}=$ \qquad

The Cosine Ratio.

We can use the Cosine ratio to solve for a missing side of a triangle if we know a certain angle in that triangle.

The Cosine Ratio

A

Example 1: Which trig ratio would you use to solve the following problems?

Example 2: Find the length of the missing sides.

Example 3:

The angle of a cable from a point 12.5 metres from its base is 52°. How long is the cable?

Example 4:

How far from the base of a flagpole must a guy wire be fixed if the wire is 12 metres long and it makes an angle of 63° with the ground?

Example 5:

Find the Cosine ratio of the following diagram.
You may need to use Pythagoras!!!

Example 6:

Find $<M$

