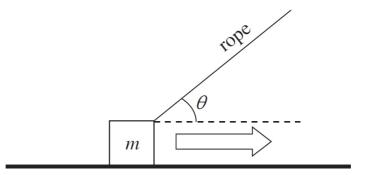
Section II: Free Response

1. This question concerns the motion of a crate being pulled across a horizontal floor by a rope. In the diagram below, the mass of the crate is m, the coefficient of kinetic friction between the crate and the floor is μ , and the tension in the rope is \mathbf{F}_{T} .



- (a) Draw and label all of the forces acting on the crate.
- (b) Compute the normal force acting on the crate in terms of m, $F_{\rm T}$, θ , and g.
- (c) Compute the acceleration of the crate in terms of $m, F_{\rm T}, \theta, \mu$, and g.
- 2. In the diagram below, a massless string connects two blocks—of masses m_1 and m_2 , respectively—on a flat, frictionless tabletop. A force **F** pulls on Block #2, as shown:

]	Block a	#1	Block	#2
	$m_1^{}$		<i>m</i> ₂	→ F

- (a) Draw and label all of the forces acting on Block #1.
- (b) Draw and label all of the forces acting on Block #2.
- (c) What is the acceleration of Block #1? Please state your answer in terms of F, m_1 , and m_2 .
- (d) What is the tension in the string connecting the two blocks? Please state your answer in terms of F, m_1 , and m_2 .
- (e) If the string connecting the blocks were not massless, but instead had a mass of m, determine
 - (i) the acceleration of Block #1, in terms of F, m, m_1 , and m_2 .
 - (ii) the difference between the strength of the force that the connecting string exerts on Block #2 and the strength of the force that the connecting string exerts on Block #1. Please state your answer in terms of F, m, m_1 , and m_2 .
- 3. In the figure shown, assume that the pulley is frictionless and massless.

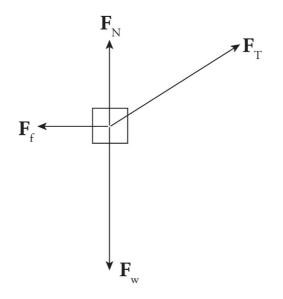


- (a) If the surface of the inclined plane is frictionless, determine what value(s) of θ will cause the box of mass m_1 to
 - (i) accelerate up the ramp
 - (ii) slide up the ramp at constant speed
- (b) If the coefficient of kinetic friction between the surface of the inclined plane and the box of mass m_1 is μ_k , derive (but do not solve) an equation satisfied by the value of θ , which will cause the box of mass m_1 to slide up the ramp at constant speed.
- 4. A skydiver is falling with speed v_0 through the air. At that moment (time t = 0), she opens her parachute and experiences the force of air resistance whose strength is given by the equation F = kv, in which k is a proportionality constant and v is her descent speed. The total mass of the skydiver and equipment is m. Assume that g is constant throughout her descent.
 - (a) Draw and label all the forces acting on the skydiver after her parachute opens.
 - (b) Determine the skydiver's acceleration in terms of *m*, *v*, *k*, and g.
 - (c) Determine the skydiver's terminal speed (that is, the eventual constant speed of descent).
 - (d) Sketch a graph of v as a function of time, being sure to label important values on the vertical axis.

Section II: Free Response

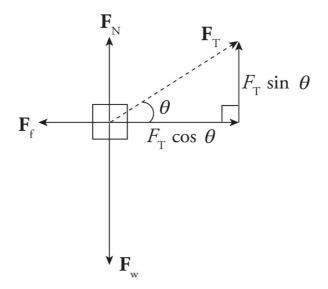
1. (a)

The forces acting on the crate are \mathbf{F}_{T} (the tension in the rope), \mathbf{F}_{w} (the weight of the block), \mathbf{F}_{N} (the normal force exerted by the floor), and \mathbf{F}_{f} (the force of kinetic friction):



(b)

First, break \mathbf{F}_{T} into its horizontal and vertical components:



Since the net vertical force on the crate is zero, you get $F_{\rm N} + F_{\rm T} \sin \theta = F_{\rm w}$, so $F_{\rm N} = F_{\rm w} - F_{\rm T} \sin \theta = mg - F_{\rm T} \sin \theta$.

(c)

From part (b), notice that the net horizontal force acting on the crate is

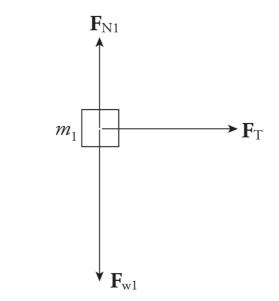
$$F_{\rm T}\cos\theta - F_{\rm f} = F_{\rm T}\cos\theta - \mu F_{\rm N} = F_{\rm T}\cos\theta - \mu(mg - F_{\rm T}\sin\theta)$$

so the crate's horizontal acceleration across the floor is

$$a = \frac{F_{\text{net}}}{m} = \frac{F_{\text{T}}\cos\theta - \mu(mg - F_{\text{T}}\sin\theta)}{m}$$

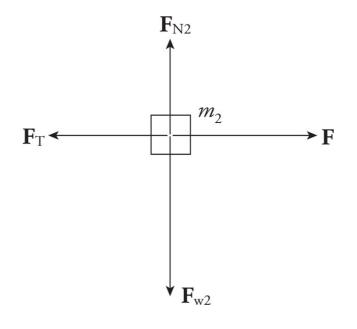
2. (a)

The forces acting on Block #1 are \mathbf{F}_{T} (the tension in the string connecting it to Block #2), \mathbf{F}_{w1} (the weight of the block), and \mathbf{F}_{N1} (the normal force exerted by the tabletop):



(b)

The forces acting on Block #2 are **F** (the pulling force), \mathbf{F}_{T} (the tension in the string connecting it to Block #1), \mathbf{F}_{w2} (the weight of the block), and \mathbf{F}_{N2} (the normal force exerted by the tabletop):



(c)

Newton's Second Law applied to Block #2 yields $F - F_T = m_2 a$, and applied to Block #1 yields $F_T = m_1 a$. Adding these equations, you get $F = (m_1 + m_2)a$, so

$$a = \frac{F}{m_1 + m_2}$$

(d)

Substituting the result of part (c) into the equation $F_{\rm T}=m_1 a,$ you get

$$F_{\rm T} = m_1 a = \frac{m_1}{m_1 + m_2} F$$

(e)

(i) Since the force **F** must accelerate all three masses— m_1 , m, and m_2 —the common acceleration of all parts of the system is

$$a = \frac{F}{m_1 + m + m_2}$$

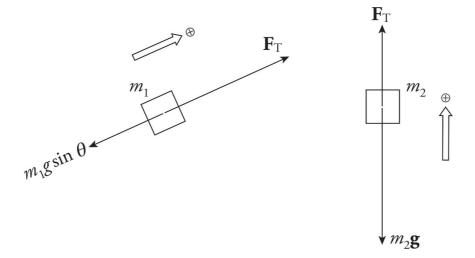
(ii) Let \mathbf{F}_{T_1} denote the tension force in the connecting string acting on Block #1, and let \mathbf{F}_{T_2} denote the tension force in the connecting string acting on Block #2. Then, Newton's Second Law applied to Block #1 yields $F_{T_1} = m_1 a$ and applied to Block #2 yields $F - F_{T_2} = m_2 a$. Therefore, using the value for *a* computed above, you get

$$F_{T2} - F_{T1} = (F - m_2 a) - m_1 a$$

= $F - (m_1 + m_2) a$
= $F - (m_1 + m_2) \frac{F}{m_1 + m + m_2}$
= $F \left(1 - \frac{m_1 + m_2}{m_1 + m + m_2} \right)$
= $F \frac{m}{m_1 + m + m_2}$

3. (a)

First, draw free-body diagrams for the two boxes:



Applying Newton's Second Law to the boxes yields the following two equations:

 $F_{\rm T} - m_{\rm I}g\sin\theta = m_{\rm I}a \quad (1)$

$$F_{\rm T} - m_2 g = m_2(-a)$$
 (2)

Subtract the equations and solve for *a*:

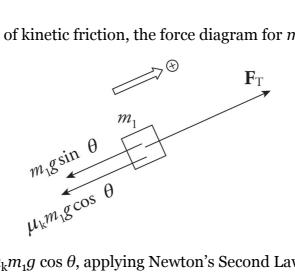
$$m_2 g - m_1 g \sin \theta = (m_1 + m_2)a$$
$$a = \frac{m_2 - m_1 \sin \theta}{m_1 + m_2}g$$

(i) For *a* to be positive, you must have $m_2 - m_1 \sin \theta > 0$, which implies that $\sin \theta < m_2/m_1$, or, equivalently, $\theta < \sin^{-1}(m_2/m_1)$.

(ii) For *a* to be zero, you must have $m_2 - m_1 \sin \theta = 0$, which implies that $\sin \theta = m_2/m_1$, or, equivalently, $\theta = \sin^{-1}(m_2/m_1)$.

(b)

Including the force of kinetic friction, the force diagram for m_1 is



Since $F_f = \mu_k F_N = \mu_k m_1 g \cos \theta$, applying Newton's Second Law to the boxes yields these two equations:

$$F_{\rm T} - m_{\rm I}g\sin\theta - \mu_{\rm k}mg\cos\theta = m_{\rm I}a \quad (1)$$

 $m_2g - F_{\rm T} = m_2a$ (2)

Add the equations and solve for *a*:

$$m_2 g - m_1 g \sin \theta - \mu_k mg \cos \theta = (m_1 + m_2) a$$
$$a = \left(\frac{m_2 - m_1 (\sin \theta + \mu_k \cos \theta)}{m_1 + m_2}\right) g$$

In order for a to be equal to zero (so that the box of mass m_1 slides up the ramp with constant velocity),

$$m_2 - m_1(\sin\theta + \mu_k \cos\theta) = 0$$
$$\sin\theta + \mu_k \cos\theta = \frac{m_2}{m_1}$$

(a) 4.

> The forces acting on the skydiver are \mathbf{F}_{r} , the force of air resistance (upward), and \mathbf{F}_{w} , the weight of the skydiver (downward):

> >) skydiver (mass = m)Fw

Since $F_{\text{net}} = F_{\text{w}} - F_{\text{r}} = mg - kv$, the skydiver's acceleration is

$$a = \frac{F_{\text{net}}}{m} = \frac{mg - kv}{m}$$

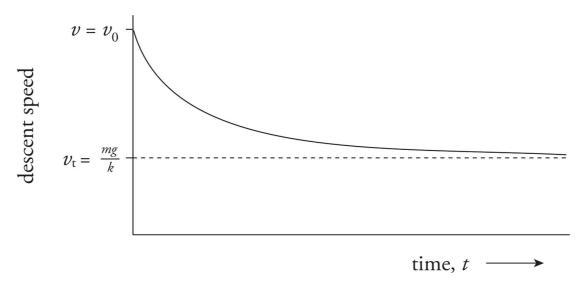
(c)

Terminal speed occurs when the skydiver's acceleration becomes zero, since then the descent velocity becomes constant. Setting the expression derived in part (b) equal to 0, find the speed $v = v_t$ at which this occurs:

$$v = v_{t}$$
 when $a = 0 \implies \frac{mg - kv_{t}}{m} = 0 \implies v_{t} = \frac{mg}{k}$

(d)

The skydiver's descent speed is initially v_0 and the acceleration is (close to) g. However, once the parachute opens, the force of air resistance provides a large (speed-dependent) upward acceleration, causing her descent velocity to decrease. The slope of the velocity-versus-time graph (the acceleration) is not constant but instead decreases to zero as her descent speed decreases from v_0 to v_t . Therefore, the graph is not linear.



(b)

CrackAP.com

For more AP practice tests, please visit <u>www.crackap.com</u> or links below.

- **AP World History Practice Tests**
- **AP US History Practice Tests**
- AP European History Practice Tests
- AP US Government and Politics Practice Tests
- **AP Psychology Practice Tests**
- **AP Biology Practice Tests**
- **AP Chemistry Practice Tests**
- **AP Macroeconomics Practice Tests**
- AP Microeconomics Practice Tests
- AP Statistics Practice Tests
- AP English Language and Composition Practice Tests
- AP English Literature and Composition Practice Tests
- AP Calculus AB Practice Tests
- **AP Calculus BC Practice Tests**
- AP Physics 1 Practice Tests
- AP Physics 2 Practice Tests
- AP Physics C: Mechanics Practice Tests
- AP Physics C: Electricity and Magnetism Practice Tests

AP practice tests download

https://www.crackap.com/ap-downloads/

AP Prep Books

https://www.crackap.com/ap-books/