Practice

Check

- **4.** Write each expression as a product of powers.
 - a) $(6 \times 4)^3$ b) $(2 \times 5)^4$ c) $[(-2) \times 3]^5$
 - d) $(25 \times 4)^2$ e) $(11 \times 3)^1$ f) $[(-3) \times (-2)]^3$
- **5.** Write each expression as a quotient of powers.
 - a) $(8 \div 5)^3$ b) $(21 \div 5)^4$ c) $[(-12) \div (-7)]^5$
 - d) $\left(\frac{10}{3}\right)^3$ e) $\left(\frac{1}{3}\right)^2$ f) $\left(\frac{27}{100}\right)^4$
- **6.** Write as a power.

- a) $(3^2)^4$ b) $(6^3)^3$ c) $(5^3)^1$ d) $(7^0)^6$ e) $-(8^2)^2$ f) $[(-3)^4]^2$
- 7. Simplify $(2^4)^2$ and $(2^2)^4$. What do you notice? Explain the results.
- **8.** Write each expression as a product or quotient of powers.
 - a) $[3 \times (-5)]^3$
- **b)** $-(2 \times 4)^5$
- c) $(\frac{2}{3})^4$
- d) $\left(\frac{-7}{-2}\right)^2$
- e) $-[(-10) \times 3]^3$
- f) $(16 \div 9)^2$

Apply

- **9.** Why is the value of $(-5^2)^3$ negative?
- **10.** Simplify each expression, then evaluate it. For each expression, state the strategy you used and why.
 - a) $(3 \times 2)^3$ b) $[(-2) \times 4]^2$ c) $(\frac{9}{-3})^3$
- d) $\left(\frac{8}{2}\right)^2$ e) $(12^8)^0$ f) $[(-4)^2]^2$
- **11.** Why is the value of $[(-2)^3]^4$ positive but the value of $[(-2)^3]^5$ is negative?

12. Compare the values of $-(4^2)^3$, $(-4^2)^3$, and $[(-4)^2]^3$.

What do you notice? Explain the results.

- **13. Assessment Focus** For each expression below:
 - i) Evaluate it in two different ways:
 - · do the operation in brackets first
 - use the exponent laws
 - ii) Compare the results. Which method do you prefer? Was it always the same method each time? Explain.
 - a) $(4 \times 3)^3$ b) $[(-2) \times (-5)]^2$ c) $(\frac{6}{2})^4$
 - d) $\left(\frac{14}{2}\right)^0$ e) $[(-5)^2]^2$ f) $(2^5)^3$
- **14.** Simplify, then evaluate. Show your work.

 - a) $(3^2 \times 3^1)^2$ b) $(4^6 \div 4^4)^2$
 - c) $[(-2)^0 \times (-2)^3]^2$ d) $(10^6 \div 10^4)^3$
 - e) $(10^3)^2 \times (10^2)^3$ f) $(12^2)^4 \div (12^3)^2$

 - a) $(5^2)^6 \div (5^3)^4$ b) $[(-2)^2]^3 \times (-2)^3$
- **15.** Find any errors in this student's work. Copy the solution and correct the errors.

a) $(3^2 \times 2^2)^3 = (6^4)^3$	b) $[(-3)^2]^3 = (-3)^5$
= 6 ¹²	= - 243
= 2 176 782 336	
$C) \left(\frac{G^2}{G^1}\right)^2 = G^4$	$\lambda) (2^6 \times 2^2 \div 2^4)^3 = (2^3)^3$
= 1296	= 29
	= 5 2
e) $(10^2 + 10^3)^2 = (10^5)^2$	
= 1010	
= 10 000 000 000	

- **16.** Simplify, then evaluate each expression.
 - a) $(4^2 \times 4^3)^2 (5^4 \div 5^2)^2$
 - **b)** $(3^3 \div 3^2)^3 + (8^4 \times 8^3)^0$
 - c) $(2^3)^4 + (2^4 \div 2^3)^2$
 - d) $(6^2 \times 6^0)^3 + (2^6 \div 2^4)^3$
 - e) $(5^3 \times 5^3)^0 (4^2)^2$
 - f) $(10^5 \div 10^2)^2 + (3^3 \div 3^1)^4$
- **17.** Simplify, then evaluate each expression.
 - a) $[(-2)^3 \times (-2)^2]^2 [(-3)^3 \div (-3)^2]^2$
 - **b)** $[(-2)^3 \div (-2)^2]^2 [(-3)^3 \times (-3)^2]^2$
 - c) $[(-2)^3 \times (-2)^2]^2 + [(-3)^3 \div (-3)^2]^2$
 - d) $[(-2)^3 \div (-2)^2]^2 + [(-3)^3 \times (-3)^2]^2$
 - e) $[(-2)^3 \div (-2)^2]^2 [(-3)^3 \div (-3)^2]^2$
 - f) $[(-2)^3 \times (-2)^2]^2 + [(-3)^3 \times (-3)^2]^2$
- **18.** Use grid paper. For each expression below:
 - i) Draw a rectangle to represent the expression.
 - ii) Use the exponent laws to write the expression as a product of squares.
 - iii) Draw a rectangle to represent the new form of the expression.
 - iv) Compare the two rectangles for each expression.

How are the rectangles the same? How are they different? Use these rectangles to explain how the square of a product and the product of squares are related.

- a) $(2 \times 3)^2$
- **b)** $(2 \times 4)^2$
- c) $(3 \times 4)^2$
- d) $(1 \times 4)^2$

- **19.** Simplify, then evaluate each expression.
 - a) $(2^3 \times 2^6)^2 (3^7 \div 3^5)^4$
 - **b)** $(6 \times 8)^5 + (5^3)^2$
 - c) $[(-4)^3 \times (-4)^2]^2 + (4^3 \times 4^2)^2$
 - d) $[(-2)^4]^3 + [(-4)^3]^2 [(-3)^2]^4$
 - e) $[(-3)^4]^2 \times [(-4)^0]^2 [(-3)^3]^0$
 - f) $[(-5) \times (-4)]^3 + [(-6)^3]^2$ $-[(-3)^9 \div (-3)^8]^5$

Take It Further

- **20.** a) Write 81:
 - i) as a power of 9
 - ii) as a power of a product
 - iii) as a power of 3
 - **b)** Write 64:
 - i) as a power of 8
 - ii) as a power of a product
 - iii) as a power of 2
 - c) Find other numbers for which you can follow steps similar to those in parts a and b.
- **21.** a) List the powers of 2 from 2^0 to 2^{12} in standard form.
 - b) Use your list from part a to write each number in the expressions below as a power of 2. Evaluate each expression using the exponent laws and the list in part a.
 - i) 32×64
- ii) $16 \times 8 \times 32$
- iii) $1024 \div 128$ iv) $\frac{16 \times 256}{1024}$ v) $(8 \times 4)^3$ vi) $\left(\frac{256}{64}\right)^4$

Reflect

Design and create a poster that summarizes all the exponent laws you have learned. Provide an example of each law.